Quasihomomorphisms from the integers into matrices

Jan Draisma, Rob Eggermont, Tim Seynnaeve, Nafie Tairi, Alejandro Vargas, Emanuele Ventura

Question 1, Kazhdan-Ziegler,
Approximate cohomology, 2018

Question Let $c \in \mathbb{Z}_{>0}$. Does there exist a constant $C=C(c)$ such that the following holds: For all $n \in \mathbb{Z}_{>0}$ and all functions $\mathrm{f}: \mathbb{Z} \rightarrow \mathbb{C}^{\mathrm{n} \times n}$ such that $\forall x, y \in \mathbb{Z}: \quad r k(f(x+y)-f(x)-f(y)) \leq c,(1)$ there exists a matrix v such that

$$
\begin{equation*}
\forall x \in \mathbb{Z}: \quad \operatorname{rk}(f(x)-x \cdot v) \leq C ? \tag{2}
\end{equation*}
$$

Some remarks

- If $\mathrm{c}=0$ then f is a homomorphism of (additive) groups. Then $\mathrm{C}=0$.
- If f satisfies (1), we call f a c-quasimorphism
- We focus on the space of diagonal matrices, which we identify with \mathbb{C}^{n}
- The rank of a diagonal matrix is simply the Hamming weight w_{H} of the corresponding vector; i.e. the number of nonzero entries.
- We can without loss of generality assume that $v=\mathrm{f}(1)$; this increases the constant C by a factor ≤ 2.
Example Take $c=1$ and $n \geq 3$, and define

$$
\begin{gathered}
x \mapsto\left(\left[\frac{2 x+2}{5}\left|,\left|\frac{x+2}{5}\right|, \alpha_{x}, 0, \ldots, 0\right)\right.\right. \\
\text { where } \alpha_{x}=\left\{\begin{array}{l}
1 \text { if } 5 \mid x \\
0 \text { else. }
\end{array}\right.
\end{gathered}
$$

First couple of values:

$$
\begin{array}{ll}
\mathrm{f}(0)=(0,0,1, \ldots) & \mathrm{f}(8)=(3,2,0, \ldots) \\
\mathrm{f}(1)=(0,0,0, \ldots) & \mathrm{f}(9)=(4,2,0, \ldots) \\
\mathrm{f}(2)=(1,0,0, \ldots) & \mathrm{f}(10)=(4,2,1, \ldots) \\
\mathrm{f}(3)=(1,1,0, \ldots) & \mathrm{f}(11)=(4,2,0, \ldots) \\
\mathrm{f}(4)=(2,1,0, \ldots) & \mathrm{f}(12)=(5,2,0, \ldots) \\
\mathrm{f}(5)=(2,1,1, \ldots) & \mathrm{f}(13)=(5,3,0, \ldots) \\
\mathrm{f}(6)=(2,1,0, \ldots) & \mathrm{f}(14)=(6,3,0, \ldots) \\
\mathrm{f}(7)=(3,1,0, \ldots) & \mathrm{f}(15)=(6,3,1, \ldots)
\end{array}
$$

- f is a 1-quasimorphism. For instance

$$
f(14)-f(6)-f(8)=(1,0,0, \ldots)
$$

has Hamming weight 1.

- $\mathcal{w}_{\mathrm{H}}(\mathrm{f}(\mathrm{x})-\mathrm{x} \cdot \mathrm{f}(1)) \leq 3$, where equality is sometimes achieved.
- For $v=\left(\frac{2}{5}, \frac{1}{5}, 0, \ldots\right)$, it holds that

$$
w_{\mathrm{H}}(f(x)-x \cdot v) \leq 2 \quad \forall x \in \mathbb{Z}
$$

c-quasimorphisms into diagonal matrices

Theorem 1. Let $c \in \mathbb{Z}_{\geq 0}$. There exists a constant $C=C(c) \in \mathbb{Z}_{\geq 0}$ such that for all $n \in \mathbb{Z}_{\geq 0}$ and all c-quasimorphisms $\mathrm{f}: \mathbb{Z} \rightarrow \mathbb{Q}^{n}$, we have

$$
\forall a \in \mathbb{Z}: \quad \mathcal{w}_{H}(f(a)-a \cdot f(1)) \leq C
$$

Remarks:

- Corollary: Theorem 1 holds with \mathbb{Q} replaced by any torsion-free abelian group (in particular: any field of characteristic 0), with the same $C(c)$.
- We can choose $C=28 \mathrm{c}$; this is most likely not optimal.
Proofs
Write $f=\left(f_{1}, \ldots, f_{n}\right)$. We fix $a \in \mathbb{N}$ and write $[a]=\{1, \ldots, a\}$.
Define the problem sets
- $\mathrm{P}_{1}\left(\mathrm{f}_{\mathrm{i}}\right):=\left\{x \in[\mathrm{a}] \mid \mathrm{f}_{\mathrm{i}}(\mathrm{x}+1) \neq \mathrm{f}_{\mathrm{i}}(\mathrm{x})+\mathrm{f}_{\mathrm{i}}(1)\right\} ;$
- $P_{a}\left(f_{i}\right):=\left\{x \in[a] \mid f_{i}(x+a) \neq f_{i}(x)+f_{i}(a)\right\} ;$
- $P\left(f_{i}\right):=\left\{(x, y) \in[a] \times[a] \mid f_{i}(x+y) \neq\right.$ $\left.\mathrm{f}_{\mathfrak{i}}(\mathrm{x})+\mathrm{f}_{\mathrm{i}}(\mathrm{y})\right\}$.
Claim 1: Let $g:[2 a] \rightarrow \mathbb{Q}$ be any map such that $g(a) \neq a g(1)$, then
$\left|P_{1}(g)\right| \geq q a$ or $\left|P_{a}(g)\right| \geq p a$ or $|P(g)| \geq r a^{2}$, where $\mathrm{q}=0.1167, \mathrm{p}=0.165$, and $\mathrm{r}=0.0765$.
Why Claim 1 implies the theorem:

$$
w_{\mathrm{H}}(\mathrm{f}(\mathrm{a})-\mathrm{a} \cdot \mathrm{f}(1))>\mathrm{C}
$$

$\xrightarrow{\text { Claim } 1}$ WLOG $\#\left\{i:\left|P\left(f_{i}\right)\right| \geq r^{2}\right\}>\frac{C}{3}$
$\Longrightarrow \exists(x, y) \in[a] \times[a]$ such that $\#\left\{i:(x, y) \in P\left(f_{i}\right)\right\}>$
$\Longrightarrow f$ is not a c-quasimorphism.
Why you should believe Claim 1 :
Fact: If $\mathrm{g}: \mathbb{Z} / \mathrm{a} \mathbb{Z} \rightarrow \mathbb{Q}$ is a group morphism, then $\mathrm{g} \equiv 0$.

- WLOG $g(a)=0$ and $g(1) \neq 0$.
- Observe:
- $\mathrm{P}_{\mathrm{a}}(\mathrm{g})$ small means: " g is almost a map from $\mathbb{Z} / \mathrm{aZ} .{ }^{\prime \prime}$
- $P(g)$ small means: " g is almost a group homomorphism."
- If g is close to being constant, then $P_{1}(g)$ is large.
- So we are done if we can make the following precise:

If g is almost a group morphism $\mathbb{Z} / \mathrm{a} \mathbb{Z} \rightarrow \mathbb{Q}$, then almost $g \equiv 0$. Want to know how? See [1]

1-quasimorphisms into symmetric matrices

Theorem 2 If $\mathrm{f}: \mathbb{Z} \rightarrow \operatorname{Sym}(\mathfrak{n} \times \mathfrak{n}, \mathbb{Q})$ is a 1 quasimorphism, there is an $A \in \operatorname{Sym}(n \times n, \mathbb{Q})$ such that

$$
\operatorname{rk}(f(x)-x \cdot A) \leq 2 \quad \forall x \in \mathbb{Z}
$$

Remarks

- In particular, for $\mathrm{c}=1$ the bound $\mathrm{C}=28$ from Theorem 1 can be improved to $C=2$.
Proof
- WLOG can assume that $f(1)=0$.
- Then we find that $\operatorname{rk}(f(x+1)-f(x)) \leq 1$.
- So we write $\Delta_{f}(x)=f(x+1)-f(x)$. This is a sequence of rank one matrices. Note that $f(x)=\Delta(1)+\cdots+\Delta(x-1)$ for $x>0$.
- For instance, in the example our sequence looks like Table 1 below.
- If f is a 1 -quasimorphism, then

$$
\begin{array}{r}
\operatorname{rk}\left(\Delta_{\mathrm{f}}(1)+\cdots+\Delta_{\mathrm{f}}(\mathrm{k})\right. \\
\left.-\Delta_{\mathrm{f}}(\mathrm{x})-\cdots-\Delta_{\mathrm{f}}(\mathrm{x}+\mathrm{k})\right)=0
\end{array}
$$

- With some work, we can show that then Δ_{f} must look as follows Table 2 below. where $a b \cdots b a$ is a length $p-2$ palindromic sequence of matrices that lie in a fixed $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$.
- Then we can take $A=\frac{f(p-1)}{p}=\frac{a+b+\cdots+b+a}{p}$. Indeed:
- If $x=k p$, then
$f(x)=k \cdot(a+b+\cdots+b+a)+\gamma=k p A+\gamma$, so $\operatorname{rk}(f(x)-x \cdot A)=\operatorname{rk}(\gamma) \leq 1$.
- Else $p \nmid x$, and then both $f(x)$ and A are in the aforementioned $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$, which implies $\operatorname{rk}(f(x)-x \cdot A) \leq 2$.

Conclusions

We answered Question 1 for diagonal matrices, and for symmetric matrices if $c=1$. We don't know a proof for general matrices (even if $c=1$); or for symmetric matrices and $c>1$.

References

[1] J. Draisma, R. Eggermont, T. Seynnaeve, N. Tairi, E. Ventura
Quasihomomorphisms from the integers into Hamming metrics
ArXiv: 2204.08392
[2] T. Seynnaeve, N. Tairi, A. Vargas
One-quasihomomorphisms from the integers into symmetric matrices ArXiv: 2302.01611
 $\Delta(x) \cdots e_{1} e_{2} e_{1} e_{3}-e_{3} e_{1} e_{2} e_{1} e_{3}-e_{3} e_{1} e_{2} e_{1} e_{3}-e_{3} e_{1} e_{2} e_{1} \cdots$

$\Delta(x) \cdots$ ab \cdots b a $\alpha-\alpha$ ab… ba $\beta-\beta$ ab \cdots b a $\gamma-\gamma \cdots$

