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Motivation: tropical geometry deals with piecewise linear objects
that arise as limits of degenerations on classical algebraic varieties

Thus, a central question is what information survives this
degeneration, hence tropical results that show a strong analogy to
the classical setting are interesting.
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A recipe for solution
follow three steps:

(D Put a geometry on (A)

(D Consider locus of solution
and deform it.

@ Find a favorable situation
to do the count.
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genus-2g’ curve to

D for [4] :

Put a geometry on C¢ and C,

e C; is naively easy

Co Lt
G

D

e but, account for isometry:
L

|}
¢ ~ {
T
@ Ao CE)

so define,

TropModel(G) = “minimal
model”

(whatever minimal is here)
rem: no valency-2 vertices
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A recipe for solution
(D Put a geometry on (A)
(1D Deform locus of solution
@ Count in a favorable
situation
C'"P(g’) = degree-(g’ + 1)
morphisms from
genus-2g’ curve to

(Dfor:

Put a geometry on Cg and C,

@for:

Lift deformation paths

@for:

Calculate for caterpillar of loops

Remarks:
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e —
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there is a category (indexed
branched covers) containing both
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