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Overall goal: solve an enumerative problem in tropical geometry
modelled after a classical problem

Motivation: tropical geometry deals with piecewise linear objects
that arise as limits of degenerations on classical algebraic varieties

Thus, a central question is what information survives this
degeneration, hence tropical results that show a strong analogy to
the classical setting are interesting.
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Enumerative geometry

A question’s recipe
A Some geometrical objects
(e.g. lines, curves, maps, etc.)
B Some conditions
mix them to get
? How many in A satisfy B ?

Examples:
1 Take:
A = curves that are:

irreducible
planar
complex
sing. are nodal
degree d
genus g

We have
dim A = 3d − 1 + g ,

(whatever dimension means here)

B = pass through fixed points
P = {p1, . . . , p3d−1+g}

? = Finite answer, denoted:
N(d , g)

Rem: independent of P
(by intersection theory)
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Enumerative geometry - Examples

A question’s recipe
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? How many in A satisfy B ?

Examples:
1 N(d , g) = degree-d
genus-g complex plane curves
through 3d − 1 + g points

2 Take:

A = non-constant rational maps
f : X → P1

X is a curve that is
smooth
has even genus 2g ′

We have
dim A = 2deg f − 2g ′ − 2

B = Require:
deg f = g ′ + 1

? = number we call C (g ′)
Rem: independent of X
(again by intersection theory)
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Enumerative geometry - Tropicalizing examples

A question’s recipe
A Some geometrical objects
(e.g. lines, curves, maps, etc.)
B Some conditions
mix them to get
? How many in A satisfy B ?

Examples:
1 N(d , g) = degree-d
genus-g complex plane curves
through 3d − 1 + g points

2 C (g ′) = degree-(g ′ + 1)
morphisms from genus-2g ′

smooth complex curve to P1

Now we tropicalize the examples

3 Ntrop(d , g) = degree-d
genus-g tropical plane curves
through 3d − 1 + g points P
Rem. independent of P by
correspondence theorem.
(Mikhalkin 05)

4 C trop(g ′) =
degree-(g ′ + 1) tropical
morphisms from genus-2g ′

tropical curve Γ to metric trees
Rem. independent of Γ by
combinatorics/balancing
condition (Vargas 22)
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Counting tropical morphisms

A Some geometrical objects
B Some conditions
? How many in A satisfy B ?

C trop(g ′) = degree-(g ′ + 1)
tropical morphisms from
genus-2g ′ tropical curve Γ to
metric trees

A for 4 :
(abstract) tropical curve:
Is a pair of:

finite graph G = (V ,E )
and length function

ℓ : E (G )→ R≥0

from (G , ℓ)→ get a compact
metric space |Γ|
glue together intervals⊔

e∈E(G)[0, ℓ(e)]/ ∼
where the gluing is
∼= e ← A→ e ′ gets glued
Example:
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mφ(e)

• Effective ramification divisor
rem: is a realizability condition
• degree of Φ: sum of all local
degrees over any fiber of p ∈ ∆
• tree genus-0 metric graph
(there are no cycles)
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? What is C trop(g ′)?



Counting tropical morphisms

A Some geometrical objects
B Some conditions
? How many in A satisfy B ?
C trop(g ′) = degree-(g ′ + 1)
tropical morphisms from
genus-2g ′ tropical curve to
metric trees

A for 4 :
(abstract) tropical curve:
Γ = (G , ℓ : E (G )→ R≥0)

genus:
g(Γ) = #E (G )−#V (G ) + 1
tropical morphism:
Φ : |Γ| → |∆|

B for 4 :
Take a “general” (i.e. trivalent)
graph G

CG = { tropical curves with
underlying graph G}

Take φ : G → T
Cφ = { tropical morphisms with

underlying morphism φ}
Calculate
dimCG = 3g − 3
dimCφ = 2g + 2d − 5
Finite answer if

dimCG = dimCφ

Thus, degφ = g ′ + 1

? What is C trop(g ′)?



Counting tropical morphisms

A Some geometrical objects
B Some conditions
? How many in A satisfy B ?
C trop(g ′) = degree-(g ′ + 1)
tropical morphisms from
genus-2g ′ tropical curve to
metric trees

A for 4 :
(abstract) tropical curve:
Γ = (G , ℓ : E (G )→ R≥0)

genus:
g(Γ) = #E (G )−#V (G ) + 1
tropical morphism:
Φ : |Γ| → |∆|

B for 4 :
Take a “general” (i.e. trivalent)
graph G
CG = { tropical curves with

underlying graph G}

Take φ : G → T
Cφ = { tropical morphisms with

underlying morphism φ}
Calculate
dimCG = 3g − 3
dimCφ = 2g + 2d − 5
Finite answer if

dimCG = dimCφ

Thus, degφ = g ′ + 1

? What is C trop(g ′)?



Counting tropical morphisms

A Some geometrical objects
B Some conditions
? How many in A satisfy B ?
C trop(g ′) = degree-(g ′ + 1)
tropical morphisms from
genus-2g ′ tropical curve to
metric trees

A for 4 :
(abstract) tropical curve:
Γ = (G , ℓ : E (G )→ R≥0)

genus:
g(Γ) = #E (G )−#V (G ) + 1
tropical morphism:
Φ : |Γ| → |∆|

B for 4 :
Take a “general” (i.e. trivalent)
graph G
CG = { tropical curves with

underlying graph G}
Take φ : G → T

Cφ = { tropical morphisms with
underlying morphism φ}

Calculate
dimCG = 3g − 3
dimCφ = 2g + 2d − 5
Finite answer if

dimCG = dimCφ

Thus, degφ = g ′ + 1

? What is C trop(g ′)?



Counting tropical morphisms

A Some geometrical objects
B Some conditions
? How many in A satisfy B ?
C trop(g ′) = degree-(g ′ + 1)
tropical morphisms from
genus-2g ′ tropical curve to
metric trees

A for 4 :
(abstract) tropical curve:
Γ = (G , ℓ : E (G )→ R≥0)

genus:
g(Γ) = #E (G )−#V (G ) + 1
tropical morphism:
Φ : |Γ| → |∆|

B for 4 :
Take a “general” (i.e. trivalent)
graph G
CG = { tropical curves with

underlying graph G}
Take φ : G → T
Cφ = { tropical morphisms with

underlying morphism φ}

Calculate
dimCG = 3g − 3
dimCφ = 2g + 2d − 5
Finite answer if

dimCG = dimCφ

Thus, degφ = g ′ + 1

? What is C trop(g ′)?



Counting tropical morphisms

A Some geometrical objects
B Some conditions
? How many in A satisfy B ?
C trop(g ′) = degree-(g ′ + 1)
tropical morphisms from
genus-2g ′ tropical curve to
metric trees

A for 4 :
(abstract) tropical curve:
Γ = (G , ℓ : E (G )→ R≥0)

genus:
g(Γ) = #E (G )−#V (G ) + 1
tropical morphism:
Φ : |Γ| → |∆|

B for 4 :
Take a “general” (i.e. trivalent)
graph G
CG = { tropical curves with

underlying graph G}
Take φ : G → T
Cφ = { tropical morphisms with

underlying morphism φ}
Calculate

dimCG = 3g − 3
dimCφ = 2g + 2d − 5
Finite answer if

dimCG = dimCφ

Thus, degφ = g ′ + 1

? What is C trop(g ′)?



Counting tropical morphisms

A Some geometrical objects
B Some conditions
? How many in A satisfy B ?
C trop(g ′) = degree-(g ′ + 1)
tropical morphisms from
genus-2g ′ tropical curve to
metric trees

A for 4 :
(abstract) tropical curve:
Γ = (G , ℓ : E (G )→ R≥0)

genus:
g(Γ) = #E (G )−#V (G ) + 1
tropical morphism:
Φ : |Γ| → |∆|

B for 4 :
Take a “general” (i.e. trivalent)
graph G
CG = { tropical curves with

underlying graph G}
Take φ : G → T
Cφ = { tropical morphisms with

underlying morphism φ}
Calculate
dimCG = 3g − 3

dimCφ = 2g + 2d − 5
Finite answer if

dimCG = dimCφ

Thus, degφ = g ′ + 1

? What is C trop(g ′)?



Counting tropical morphisms

A Some geometrical objects
B Some conditions
? How many in A satisfy B ?
C trop(g ′) = degree-(g ′ + 1)
tropical morphisms from
genus-2g ′ tropical curve to
metric trees

A for 4 :
(abstract) tropical curve:
Γ = (G , ℓ : E (G )→ R≥0)

genus:
g(Γ) = #E (G )−#V (G ) + 1
tropical morphism:
Φ : |Γ| → |∆|

B for 4 :
Take a “general” (i.e. trivalent)
graph G
CG = { tropical curves with

underlying graph G}
Take φ : G → T
Cφ = { tropical morphisms with

underlying morphism φ}
Calculate
dimCG = 3g − 3
dimCφ = 2g + 2d − 5

Finite answer if
dimCG = dimCφ

Thus, degφ = g ′ + 1

? What is C trop(g ′)?



Counting tropical morphisms

A Some geometrical objects
B Some conditions
? How many in A satisfy B ?
C trop(g ′) = degree-(g ′ + 1)
tropical morphisms from
genus-2g ′ tropical curve to
metric trees

A for 4 :
(abstract) tropical curve:
Γ = (G , ℓ : E (G )→ R≥0)

genus:
g(Γ) = #E (G )−#V (G ) + 1
tropical morphism:
Φ : |Γ| → |∆|

B for 4 :
Take a “general” (i.e. trivalent)
graph G
CG = { tropical curves with

underlying graph G}
Take φ : G → T
Cφ = { tropical morphisms with

underlying morphism φ}
Calculate
dimCG = 3g − 3
dimCφ = 2g + 2d − 5
Finite answer if

dimCG = dimCφ

Thus, degφ = g ′ + 1

? What is C trop(g ′)?



Counting tropical morphisms

A Some geometrical objects
B Some conditions
? How many in A satisfy B ?
C trop(g ′) = degree-(g ′ + 1)
tropical morphisms from
genus-2g ′ tropical curve to
metric trees

A for 4 :
(abstract) tropical curve:
Γ = (G , ℓ : E (G )→ R≥0)

genus:
g(Γ) = #E (G )−#V (G ) + 1
tropical morphism:
Φ : |Γ| → |∆|

B for 4 :
Take a “general” (i.e. trivalent)
graph G
CG = { tropical curves with

underlying graph G}
Take φ : G → T
Cφ = { tropical morphisms with

underlying morphism φ}
Calculate
dimCG = 3g − 3
dimCφ = 2g + 2d − 5
Finite answer if

dimCG = dimCφ

Thus, degφ = g ′ + 1

? What is C trop(g ′)?



Counting tropical morphisms

A Some geometrical objects
B Some conditions
? How many in A satisfy B ?
C trop(g ′) = degree-(g ′ + 1)
tropical morphisms from
genus-2g ′ tropical curve to
metric trees

A for 4 :
(abstract) tropical curve:
Γ = (G , ℓ : E (G )→ R≥0)

genus:
g(Γ) = #E (G )−#V (G ) + 1
tropical morphism:
Φ : |Γ| → |∆|

B for 4 :
Take a “general” (i.e. trivalent)
graph G
CG = { tropical curves with

underlying graph G}
Take φ : G → T
Cφ = { tropical morphisms with

underlying morphism φ}
Calculate
dimCG = 3g − 3
dimCφ = 2g + 2d − 5
Finite answer if

dimCG = dimCφ

Thus, degφ = g ′ + 1

? What is C trop(g ′)?



Counting tropical morphisms

A Some geometrical objects
B Some conditions
? How many in A satisfy B ?
C trop(g ′) = degree-(g ′ + 1)
tropical morphisms from
genus-2g ′ tropical curve to
metric trees

A for 4 :
(abstract) tropical curve:
Γ = (G , ℓ : E (G )→ R≥0)

genus:
g(Γ) = #E (G )−#V (G ) + 1
tropical morphism:
Φ : |Γ| → |∆|

B for 4 :
Take a “general” (i.e. trivalent)
graph G
CG = { tropical curves with

underlying graph G}
Take φ : G → T
Cφ = { tropical morphisms with

underlying morphism φ}
Calculate
dimCG = 3g − 3
dimCφ = 2g + 2d − 5
Finite answer if

dimCG = dimCφ

Thus, degφ = g ′ + 1

? What is C trop(g ′)?



Enumerative geometry - A solution

A recipe for solution

follow three steps:
I Put a geometry on A
II Consider locus of solution

and deform it.
III Find a favorable situation

to do the count.
C trop(g ′) = degree-(g ′ + 1)
tropical morphisms from
genus-2g ′ tropical curve to
metric trees
I for 4 :
Put a geometry on CG and Cφ

• CG is naively easy

• but, account for isometry:

so define,
TropModel(G ) = “minimal
model”
(whatever minimal is here)
rem: no valency-2 vertices
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Geometry for Cφ

A recipe for solution
I Put a geometry on A
II Deform locus of solution
III Count in a favorable

situation
C trop(g ′) = degree-(g ′ + 1)
tropical morphisms from
genus-2g ′ tropical curve to
metric trees

• Cφ also naively easy

but we want to regard Cφ in
CTropModel(G)

the map
Aφ : Cφ → CTropModel(G)

is linear.
only consider φ s.t. Aφ is
injective
Rem. count for ? is right for
generic Γ
and lower bounds count for
special Γ
(as in classical brill noether
theory)
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and correspond to Dyck paths:
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