Counting tropical morphisms from metric graphs to metric trees

Alejandro Vargas
Nantes Université

$$
09.03 .2023
$$

(slides available at https://vargas.page/)

Overall goal: solve an enumerative problem in tropical geometry modelled after a classical problem

Overall goal: solve an enumerative problem in tropical geometry modelled after a classical problem

Motivation: tropical geometry deals with piecewise linear objects that arise as limits of degenerations on classical algebraic varieties

Overall goal: solve an enumerative problem in tropical geometry modelled after a classical problem

Motivation: tropical geometry deals with piecewise linear objects that arise as limits of degenerations on classical algebraic varieties

Thus, a central question is what information survives this degeneration, hence tropical results that show a strong analogy to the classical setting are interesting.

Enumerative geometry

Enumerative geometry

A question's recipe

Enumerative geometry

A question's recipe
(A) Some geometrical objects

Enumerative geometry

A question's recipe
(A) Some geometrical objects
(e.g. lines, curves, maps, etc.)

Enumerative geometry

A question's recipe
(A) Some geometrical objects
(e.g. lines, curves, maps, etc.)
(B) Some conditions

Enumerative geometry

A question's recipe
(A) Some geometrical objects
(e.g. lines, curves, maps, etc.)
(B) Some conditions
mix them to get

Enumerative geometry

A question's recipe
(A) Some geometrical objects
(e.g. lines, curves, maps, etc.)
(B) Some conditions
mix them to get
(?) How many in (A) satisfy (B) ?

Enumerative geometry

A question's recipe
(A) Some geometrical objects
(e.g. lines, curves, maps, etc.)
(B) Some conditions
mix them to get
(?) How many in (A) satisfy (B) ?
Examples:

Enumerative geometry

A question's recipe
(A) Some geometrical objects
(e.g. lines, curves, maps, etc.)
(B) Some conditions
mix them to get
(?) How many in (A) satisfy (B) ?

Examples:

1 Take:

Enumerative geometry

A question's recipe
(A) Some geometrical objects
(e.g. lines, curves, maps, etc.)
(B) Some conditions
mix them to get
(?) How many in (A) satisfy (B) ?

Examples:

1 Take:
(A) $=$ curves that are:

Enumerative geometry

A question's recipe
(A) Some geometrical objects
(e.g. lines, curves, maps, etc.)
(B) Some conditions
mix them to get
(?) How many in (A) satisfy (B) ?

Examples:

1 Take:
(A) $=$ curves that are:
irreducible

Enumerative geometry

A question's recipe
(A) Some geometrical objects
(e.g. lines, curves, maps, etc.)
(B) Some conditions
mix them to get
(?) How many in (A) satisfy (B) ?

Examples:

1 Take:
(A) $=$ curves that are:
irreducible planar

Enumerative geometry

A question's recipe
(A) Some geometrical objects
(e.g. lines, curves, maps, etc.)
(B) Some conditions
mix them to get
(?) How many in (A) satisfy (B) ?

Examples:

1 Take:
(A) $=$ curves that are:
irreducible planar
complex

Enumerative geometry

A question's recipe
(A) Some geometrical objects
(e.g. lines, curves, maps, etc.)
(B) Some conditions
mix them to get
(?) How many in (A) satisfy (B) ?

Examples:

1 Take:
(A) $=$ curves that are:
irreducible planar
complex sing. are nodal

Enumerative geometry

A question's recipe
(A) Some geometrical objects
(e.g. lines, curves, maps, etc.)
(B) Some conditions
mix them to get
(?) How many in (A) satisfy (B) ?

Examples:

1 Take:
(A) $=$ curves that are:
irreducible planar
complex
sing. are nodal
degree d

Enumerative geometry

A question's recipe
(A) Some geometrical objects
(e.g. lines, curves, maps, etc.)
(B) Some conditions
mix them to get
(?) How many in (A) satisfy (B) ?

Examples:

1 Take:
(A) $=$ curves that are:
irreducible
planar
complex
sing. are nodal
degree d
genus g

Enumerative geometry

A question's recipe
(A) Some geometrical objects
(e.g. lines, curves, maps, etc.)
(B) Some conditions

We have
mix them to get
(?) How many in (A) satisfy (B) ?

Examples:

1 Take:
(A) $=$ curves that are:
irreducible
planar
complex
sing. are nodal
degree d
genus g

Enumerative geometry

A question's recipe
(A) Some geometrical objects (e.g. lines, curves, maps, etc.)
(B) Some conditions
mix them to get
(?) How many in (A) satisfy (B) ?
We have

$$
\operatorname{dim}(A)=3 d-1+g,
$$

Examples:

(1 Take:
(A) = curves that are:
irreducible
planar
complex
sing. are nodal
degree d
genus g

Enumerative geometry

A question's recipe
(A) Some geometrical objects
(e.g. lines, curves, maps, etc.)
(B) Some conditions
mix them to get
(?) How many in (A) satisfy (B) ?
We have

$$
\operatorname{dim}(A)=3 d-1+g,
$$

(whatever dimension means here)

Examples:

1 Take:
(A) = curves that are:
irreducible
planar
complex
sing. are nodal
degree d
genus g

Enumerative geometry

A question's recipe
(A) Some geometrical objects
(e.g. lines, curves, maps, etc.)
(B) Some conditions
mix them to get
(?) How many in (A) satisfy (B) ?

Examples:

We have

$$
\operatorname{dim}(A)=3 d-1+g,
$$

(whatever dimension means here)
(B) $=$ pass through fixed points

1 Take:
(A) $=$ curves that are:
irreducible
planar
complex
sing. are nodal
degree d
genus g

Enumerative geometry

A question's recipe
(A) Some geometrical objects (e.g. lines, curves, maps, etc.)
(B) Some conditions
mix them to get
(?) How many in (A) satisfy (B) ?

Examples:

1 Take:
(A) = curves that are:

We have

$$
\operatorname{dim}(A)=3 d-1+g,
$$

(whatever dimension means here)
(B) $=$ pass through fixed points

$$
\mathcal{P}=\left\{p_{1}, \ldots, p_{3 d-1+g}\right\}
$$

irreducible
planar
complex
sing. are nodal
degree d
genus g

Enumerative geometry

A question's recipe
(A) Some geometrical objects (e.g. lines, curves, maps, etc.)
(B) Some conditions
mix them to get
(?) How many in (A) satisfy (B) ?

Examples:

1 Take:
(A) = curves that are:
irreducible
planar
complex
sing. are nodal
degree d
genus g

We have

$$
\operatorname{dim}(A)=3 d-1+g,
$$

(whatever dimension means here)
(B) $=$ pass through fixed points $\mathcal{P}=\left\{p_{1}, \ldots, p_{3 d-1+g}\right\}$
? $=$ Finite answer, denoted:

Enumerative geometry

A question's recipe
(A) Some geometrical objects (e.g. lines, curves, maps, etc.)
(B) Some conditions
mix them to get
(?) How many in (A) satisfy (B) ?

Examples:

1 Take:
(A) = curves that are:
irreducible
planar
complex
sing. are nodal
degree d
genus g

We have

$$
\operatorname{dim}(A)=3 d-1+g,
$$

(whatever dimension means here)
(B) $=$ pass through fixed points

$$
\mathcal{P}=\left\{p_{1}, \ldots, p_{3 d-1+g}\right\}
$$

? $=$ Finite answer, denoted:

$$
N(d, g)
$$

Enumerative geometry

A question's recipe
(A) Some geometrical objects (e.g. lines, curves, maps, etc.)
(B) Some conditions
mix them to get
(?) How many in (A) satisfy (B) ?

Examples:

1 Take:
(A) = curves that are:
irreducible
planar
complex
sing. are nodal
degree d
genus g

We have

$$
\operatorname{dim}(A)=3 d-1+g,
$$

(whatever dimension means here)
(B) $=$ pass through fixed points

$$
\mathcal{P}=\left\{p_{1}, \ldots, p_{3 d-1+g}\right\}
$$

? $=$ Finite answer, denoted:

$$
N(d, g)
$$

Rem: independent of \mathcal{P}

Enumerative geometry

A question's recipe
(A) Some geometrical objects (e.g. lines, curves, maps, etc.)
(B) Some conditions
mix them to get
(?) How many in (A) satisfy (B) ?

Examples:

1 Take:
(A) = curves that are:
irreducible
planar
complex
sing. are nodal
degree d
genus g

We have

$$
\operatorname{dim}(A)=3 d-1+g,
$$

(whatever dimension means here)
(B) $=$ pass through fixed points

$$
\mathcal{P}=\left\{p_{1}, \ldots, p_{3 d-1+g}\right\}
$$

? $=$ Finite answer, denoted:

$$
N(d, g)
$$

Rem: independent of \mathcal{P}
(by intersection theory)

Enumerative geometry - Examples

A question's recipe
(A) Some geometrical objects
(e.g. lines, curves, maps, etc.)
(B) Some conditions
mix them to get
(?) How many in (A) satisfy (B) ?

Examples:

$1 \quad N(d, g)=$ degree- d
genus- g complex plane curves
through $3 d-1+g$ points

Enumerative geometry - Examples

2 Take:
A question's recipe
(A) Some geometrical objects
(e.g. lines, curves, maps, etc.)
(B) Some conditions
mix them to get
(?) How many in (A) satisfy (B) ?

Examples:

$1 \quad N(d, g)=$ degree- d
genus- g complex plane curves
through $3 d-1+g$ points

Enumerative geometry - Examples

A question's recipe
(A) Some geometrical objects (e.g. lines, curves, maps, etc.)
(B) Some conditions
mix them to get
(?) How many in (A) satisfy (B) ?

Examples:

$1 \quad N(d, g)=$ degree- d
genus- g complex plane curves
through $3 d-1+g$ points

2 Take:
(A) $=$ non-constant rational maps $f: X \rightarrow \mathbb{P}^{1}$

Enumerative geometry - Examples

A question's recipe
(A) Some geometrical objects (e.g. lines, curves, maps, etc.)
(B) Some conditions
mix them to get
(?) How many in (A) satisfy (B) ?

Examples:

$1 \quad N(d, g)=$ degree- d
genus- g complex plane curves
through $3 d-1+g$ points

2 Take:
(A) $=$ non-constant rational maps $f: X \rightarrow \mathbb{P}^{1}$
X is a curve that is

Enumerative geometry - Examples

A question's recipe
(A) Some geometrical objects (e.g. lines, curves, maps, etc.)
(B) Some conditions
mix them to get
(?) How many in (A) satisfy (B) ?

Examples:

$1 \quad N(d, g)=$ degree- d
genus- g complex plane curves
through $3 d-1+g$ points

2 Take:
(A) $=$ non-constant rational maps $f: X \rightarrow \mathbb{P}^{1}$
X is a curve that is smooth

Enumerative geometry - Examples

A question's recipe
(A) Some geometrical objects (e.g. lines, curves, maps, etc.)
(B) Some conditions
mix them to get
(?) How many in (A) satisfy (B) ?

Examples:

$1 \quad N(d, g)=$ degree- d
genus- g complex plane curves
through $3 d-1+g$ points

2 Take:
(A) $=$ non-constant rational maps $f: X \rightarrow \mathbb{P}^{1}$
X is a curve that is
smooth
has even genus $2 g^{\prime}$

Enumerative geometry - Examples

A question's recipe
(A) Some geometrical objects (e.g. lines, curves, maps, etc.)
(B) Some conditions
mix them to get
(?) How many in (A) satisfy (B) ?
2 Take:
(A) $=$ non-constant rational maps $f: X \rightarrow \mathbb{P}^{1}$
X is a curve that is
smooth
has even genus $2 g^{\prime}$
We have

Examples:

$1 \quad N(d, g)=$ degree- d
genus- g complex plane curves
through $3 d-1+g$ points

Enumerative geometry - Examples

A question's recipe
(A) Some geometrical objects (e.g. lines, curves, maps, etc.)
(B) Some conditions
mix them to get
(?) How many in (A) satisfy (B) ?

Examples:

$1 \quad N(d, g)=$ degree- d
genus- g complex plane curves
through $3 d-1+g$ points

2 Take:
(A) $=$ non-constant rational maps $f: X \rightarrow \mathbb{P}^{1}$
X is a curve that is smooth
has even genus $2 g^{\prime}$
We have

$$
\operatorname{dim}(A)=2 \operatorname{deg} f-2 g^{\prime}-2
$$

Enumerative geometry - Examples

A question's recipe
(A) Some geometrical objects (e.g. lines, curves, maps, etc.)
(B) Some conditions
mix them to get
(?) How many in (A) satisfy (B) ?

Examples:

$1 \quad N(d, g)=$ degree- d
genus- g complex plane curves
through $3 d-1+g$ points

2 Take:
(A) $=$ non-constant rational maps $f: X \rightarrow \mathbb{P}^{1}$
X is a curve that is
smooth
has even genus $2 g^{\prime}$
We have

$$
\operatorname{dim}(A)=2 \operatorname{deg} f-2 g^{\prime}-2
$$

(B) $=$ Require:

Enumerative geometry - Examples

A question's recipe
(A) Some geometrical objects (e.g. lines, curves, maps, etc.)
(B) Some conditions
mix them to get
(?) How many in (A) satisfy (B) ?

Examples:

$1 \quad N(d, g)=$ degree- d
genus- g complex plane curves
through $3 d-1+g$ points

2 Take:
(A) $=$ non-constant rational maps $f: X \rightarrow \mathbb{P}^{1}$
X is a curve that is smooth
has even genus $2 g^{\prime}$
We have

$$
\operatorname{dim}(A)=2 \operatorname{deg} f-2 g^{\prime}-2
$$

(B) $=$ Require:

$$
\operatorname{deg} f=g^{\prime}+1
$$

Enumerative geometry - Examples

A question's recipe
(A) Some geometrical objects (e.g. lines, curves, maps, etc.)
(B) Some conditions
mix them to get
(?) How many in (A) satisfy (B) ?

Examples:

$1 \quad N(d, g)=$ degree- d
genus- g complex plane curves through $3 d-1+g$ points

2 Take:
(A) $=$ non-constant rational maps $f: X \rightarrow \mathbb{P}^{1}$
X is a curve that is
smooth
has even genus $2 g^{\prime}$
We have

$$
\operatorname{dim}(A)=2 \operatorname{deg} f-2 g^{\prime}-2
$$

(B) $=$ Require:

$$
\operatorname{deg} f=g^{\prime}+1
$$

? ? number we call $C\left(g^{\prime}\right)$

Enumerative geometry - Examples

A question's recipe
(A) Some geometrical objects (e.g. lines, curves, maps, etc.)
(B) Some conditions
mix them to get
(?) How many in (A) satisfy (B) ?

Examples:

$1 \quad N(d, g)=$ degree- d
genus- g complex plane curves through $3 d-1+g$ points

2 Take:
(A) $=$ non-constant rational maps $f: X \rightarrow \mathbb{P}^{1}$
X is a curve that is smooth
has even genus $2 g^{\prime}$
We have

$$
\operatorname{dim}(A)=2 \operatorname{deg} f-2 g^{\prime}-2
$$

(B) $=$ Require:

$$
\operatorname{deg} f=g^{\prime}+1
$$

?) number we call $C\left(g^{\prime}\right)$
Rem: independent of X

Enumerative geometry - Examples

A question's recipe
(A) Some geometrical objects (e.g. lines, curves, maps, etc.)
(B) Some conditions
mix them to get
(?) How many in (A) satisfy (B) ?

Examples:

$1 \quad N(d, g)=$ degree- d
genus- g complex plane curves through $3 d-1+g$ points

2 Take:
(A) $=$ non-constant rational maps $f: X \rightarrow \mathbb{P}^{1}$
X is a curve that is
smooth
has even genus $2 g^{\prime}$
We have

$$
\operatorname{dim}(A)=2 \operatorname{deg} f-2 g^{\prime}-2
$$

(B) $=$ Require:

$$
\operatorname{deg} f=g^{\prime}+1
$$

? ? number we call $C\left(g^{\prime}\right)$
Rem: independent of X
(again by intersection theory)

Enumerative geometry - Tropicalizing examples

A question's recipe
(A) Some geometrical objects
(e.g. lines, curves, maps, etc.)
(B) Some conditions mix them to get
(?) How many in (A) satisfy (B) ?

Examples:

$1 \quad N(d, g)=$ degree- d
genus- g complex plane curves
through $3 d-1+g$ points

Enumerative geometry - Tropicalizing examples

A question's recipe
(A) Some geometrical objects
(e.g. lines, curves, maps, etc.)
(B) Some conditions mix them to get
(?) How many in (A) satisfy (B) ?

Examples:

$1 \quad N(d, g)=$ degree- d
genus- g complex plane curves
through $3 d-1+g$ points
$2 \quad C\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
morphisms from genus- $2 g^{\prime}$
smooth complex curve to \mathbb{P}^{1}

Enumerative geometry - Tropicalizing examples

Now we tropicalize the examples
A question's recipe
(A) Some geometrical objects
(e.g. lines, curves, maps, etc.)
(B) Some conditions mix them to get
(?) How many in (A) satisfy (B) ?

Examples:

$$
1 \quad N(d, g)=\text { degree- } d
$$

genus- g complex plane curves
through $3 d-1+g$ points
$2 \quad C\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
morphisms from genus- $2 g^{\prime}$
smooth complex curve to \mathbb{P}^{1}

Enumerative geometry - Tropicalizing examples

Now we tropicalize the examples

A question's recipe
(A) Some geometrical objects (e.g. lines, curves, maps, etc.)
(B) Some conditions mix them to get
(?) How many in (A) satisfy (B) ?

Examples:

$$
1 \quad N(d, g)=\text { degree- } d
$$

genus- g complex plane curves
through $3 d-1+g$ points
$2 \quad C\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
morphisms from genus- $2 g^{\prime}$
smooth complex curve to \mathbb{P}^{1}
$3 \quad N^{\text {trop }}(d, g)=$ degree- d genus- g tropical plane curves through $3 d-1+g$ points \mathcal{P}

Enumerative geometry - Tropicalizing examples

Now we tropicalize the examples

A question's recipe
(A) Some geometrical objects (e.g. lines, curves, maps, etc.)
(B) Some conditions mix them to get
(?) How many in (A) satisfy (B) ?

Examples:

$1 \quad N(d, g)=$ degree- d
genus- g complex plane curves
through $3 d-1+g$ points
$2 \quad C\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
morphisms from genus- $2 g^{\prime}$
smooth complex curve to \mathbb{P}^{1}
$3 \quad N^{\text {trop }}(d, g)=$ degree- d genus- g tropical plane curves through $3 d-1+g$ points \mathcal{P} Rem. independent of \mathcal{P} by correspondence theorem.

Enumerative geometry - Tropicalizing examples

Now we tropicalize the examples

A question's recipe
(A) Some geometrical objects
(e.g. lines, curves, maps, etc.)
(B) Some conditions mix them to get
(?) How many in (A) satisfy (B) ?

Examples:

$1 \quad N(d, g)=$ degree- d
genus- g complex plane curves
through $3 d-1+g$ points
$2 \quad C\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
morphisms from genus- $2 g^{\prime}$
smooth complex curve to \mathbb{P}^{1}
$3 \quad N^{\text {trop }}(d, g)=$ degree- d genus- g tropical plane curves through $3 d-1+g$ points \mathcal{P} Rem. independent of \mathcal{P} by correspondence theorem.
(Mikhalkin 05)

Enumerative geometry - Tropicalizing examples

Now we tropicalize the examples

A question's recipe
(A) Some geometrical objects
(e.g. lines, curves, maps, etc.)
(B) Some conditions mix them to get
(?) How many in (A) satisfy (B) ?

Examples:

$1 \quad N(d, g)=$ degree- d
genus- g complex plane curves
through $3 d-1+g$ points
$2 \quad C\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
morphisms from genus- $2 g^{\prime}$ smooth complex curve to \mathbb{P}^{1}
$3 \quad N^{\text {trop }}(d, g)=$ degree- d genus- g tropical plane curves through $3 d-1+g$ points \mathcal{P} Rem. independent of \mathcal{P} by correspondence theorem.
(Mikhalkin 05)
$4 \quad C^{\text {trop }}\left(g^{\prime}\right)=$
degree- $\left(g^{\prime}+1\right)$ tropical morphisms from genus- $2 g^{\prime}$
tropical curve Γ to metric trees

Enumerative geometry - Tropicalizing examples

Now we tropicalize the examples

A question's recipe
(A) Some geometrical objects
(e.g. lines, curves, maps, etc.)
(B) Some conditions mix them to get
(?) How many in (A) satisfy (B) ?

Examples:

$1 \quad N(d, g)=$ degree- d
genus- g complex plane curves
through $3 d-1+g$ points
$2 \quad C\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
morphisms from genus- $2 g^{\prime}$ smooth complex curve to \mathbb{P}^{1}
$3 \quad N^{\text {trop }}(d, g)=$ degree- d genus- g tropical plane curves through $3 d-1+g$ points \mathcal{P} Rem. independent of \mathcal{P} by correspondence theorem. (Mikhalkin 05)
$4 \quad C^{\text {trop }}\left(g^{\prime}\right)=$
degree- $\left(g^{\prime}+1\right)$ tropical morphisms from genus- $2 g^{\prime}$
tropical curve Γ to metric trees
Rem. independent of Γ by
combinatorics/balancing condition (Vargas 22)

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=\operatorname{degree}-\left(g^{\prime}+1\right)$
tropical morphisms from
genus- $2 g^{\prime}$ tropical curve Γ to
metric trees

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=\operatorname{degree}-\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve Γ to
metric trees
(A) for 4 :
(abstract) tropical curve:

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=\operatorname{degree}-\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve Γ to
metric trees
(A) for 4 :
(abstract) tropical curve:
Is a pair of:

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=\operatorname{degree}-\left(g^{\prime}+1\right)$
tropical morphisms from
genus- $2 g^{\prime}$ tropical curve Γ to
metric trees
(A) for 4 :
(abstract) tropical curve:
Is a pair of:
finite graph $G=(V, E)$

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from
genus- $2 g^{\prime}$ tropical curve Γ to
metric trees
(A) for 4 :
(abstract) tropical curve:
Is a pair of:
finite graph $G=(V, E)$
and length function

$$
\ell: E(G) \rightarrow \mathbb{R}_{\geq 0}
$$

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
from $(G, \ell) \rightarrow$ get a compact metric space $|\Gamma|$
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve Γ to
metric trees
(A) for 4 :
(abstract) tropical curve:
Is a pair of:
finite graph $G=(V, E)$ and length function

$$
\ell: E(G) \rightarrow \mathbb{R}_{\geq 0}
$$

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve Γ to
metric trees
(A) for 4 :
(abstract) tropical curve:
Is a pair of:
finite graph $G=(V, E)$ and length function

$$
\ell: E(G) \rightarrow \mathbb{R}_{\geq 0}
$$

from $(G, \ell) \rightarrow$ get a compact metric space $|\Gamma|$
glue together intervals

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve Γ to
metric trees
(A) for 4 :
(abstract) tropical curve:
Is a pair of:
finite graph $G=(V, E)$ and length function

$$
\ell: E(G) \rightarrow \mathbb{R}_{\geq 0}
$$

from $(G, \ell) \rightarrow$ get a compact metric space $|\Gamma|$ glue together intervals

$$
\bigsqcup_{e \in E(G)}[0, \ell(e)] / \sim
$$

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve Γ to
metric trees
(A) for 4 :
(abstract) tropical curve:
Is a pair of:
finite graph $G=(V, E)$ and length function

$$
\ell: E(G) \rightarrow \mathbb{R}_{\geq 0}
$$

from $(G, \ell) \rightarrow$ get a compact metric space $|\Gamma|$ glue together intervals

$$
\bigsqcup_{e \in E(G)}[0, \ell(e)] / \sim
$$

where the gluing is

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve Γ to
from $(G, \ell) \rightarrow$ get a compact metric space $|\Gamma|$ glue together intervals

$$
\bigsqcup_{e \in E(G)}[0, \ell(e)] / \sim
$$

where the gluing is
$\sim=e \leftarrow A \rightarrow e^{\prime}$ gets glued
(A) for 4 :
(abstract) tropical curve:
Is a pair of:
finite graph $G=(V, E)$ and length function

$$
\ell: E(G) \rightarrow \mathbb{R}_{\geq 0}
$$

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve Γ to
(A) for 4 :
(abstract) tropical curve:
Is a pair of:
finite graph $G=(V, E)$ and length function

$$
\ell: E(G) \rightarrow \mathbb{R}_{\geq 0}
$$

from $(G, \ell) \rightarrow$ get a compact metric space $|\Gamma|$ glue together intervals

$$
\bigsqcup_{e \in E(G)}[0, \ell(e)] / \sim
$$

where the gluing is
$\sim=e \leftarrow A \rightarrow e^{\prime}$ gets glued
Example:

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve Γ to
(A) for 4 :
(abstract) tropical curve:
Is a pair of:
finite graph G and length function
from $(G, \ell) \rightarrow$ get a compact topological realization glue together intervals

$$
\bigsqcup_{e \in E(G)}[0, \ell(e)] / \sim
$$

where the gluing is
$\sim=e \leftarrow A \rightarrow e^{\prime}$ gets glued
Example:

$$
\ell: E(G) \rightarrow \mathbb{R}_{\geq 0}
$$

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve Γ to
(A) for 4 :
(abstract) tropical curve:
Is a pair of:
finite graph G and length function

$$
\ell: E(G) \rightarrow \mathbb{R}_{\geq 0}
$$

from $(G, \ell) \rightarrow$ get a compact topological realization glue together intervals

$$
\bigsqcup_{e \in E(G)}[0, \ell(e)] / \sim
$$

where the gluing is
$\sim=e \leftarrow A \rightarrow e^{\prime}$ gets glued
Example:

(G, \rightarrow)

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from
genus- $2 g^{\prime}$ tropical curve Γ to

metric trees

(A) for 4 :
(abstract) tropical curve:
$\Gamma=($ finite graph G, length function

$$
\left.\ell: E(G) \rightarrow \mathbb{R}_{\geq 0}\right)
$$

genus:
$g(\Gamma)=$

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from
genus- $2 g^{\prime}$ tropical curve Γ to

metric trees

(A) for 4 :
(abstract) tropical curve:
$\Gamma=($ finite graph G, length function

$$
\left.\ell: E(G) \rightarrow \mathbb{R}_{\geq 0}\right)
$$

genus:
$g(\Gamma)=$ first Betti number

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?

tropical morphism:

Is a map $\Phi:|\Gamma| \rightarrow|\Delta|$
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve Γ to

metric trees

(A) for 4 :
(abstract) tropical curve:
$\Gamma=($ finite graph G, length function

$$
\left.\ell: E(G) \rightarrow \mathbb{R}_{\geq 0}\right)
$$

genus:
$g(\Gamma)=$ first Betti number

$$
=\# E(G)-\# V(G)+1
$$

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$

tropical morphism:

Is a map $\Phi:|\Gamma| \rightarrow|\Delta|$

$$
\Gamma=(G, y) \quad \Delta=(T, z)
$$

tropical morphisms from genus- $2 g^{\prime}$ tropical curve Γ to

metric trees

(A) for 4 :
(abstract) tropical curve:
$\Gamma=($ finite graph G, length function

$$
\left.\ell: E(G) \rightarrow \mathbb{R}_{\geq 0}\right)
$$

genus:
$g(\Gamma)=$ first Betti number

$$
=\# E(G)-\# V(G)+1
$$

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve Γ to

metric trees

(A) for 4 :
(abstract) tropical curve:
$\Gamma=($ finite graph G, length function

$$
\left.\ell: E(G) \rightarrow \mathbb{R}_{\geq 0}\right)
$$

genus:
$g(\Gamma)=$ first Betti number

$$
=\# E(G)-\# V(G)+1
$$

tropical morphism:

Is a map $\Phi:|\Gamma| \rightarrow|\Delta|$

$$
\Gamma=(G, y) \quad \Delta=(T, z)
$$

- induces $\varphi: G \rightarrow T$

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve Γ to

tropical morphism:

Is a map $\Phi:|\Gamma| \rightarrow|\Delta|$

$$
\Gamma=(G, y) \quad \Delta=(T, z)
$$

- induces $\varphi: G \rightarrow T$
- continuous

metric trees

(A) for 4 :
(abstract) tropical curve:
$\Gamma=($ finite graph G, length function

$$
\left.\ell: E(G) \rightarrow \mathbb{R}_{\geq 0}\right)
$$

genus:
$g(\Gamma)=$ first Betti number

$$
=\# E(G)-\# V(G)+1
$$

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve Γ to
metric trees

tropical morphism:

Is a map $\Phi:|\Gamma| \rightarrow|\Delta|$

$$
\Gamma=(G, y) \quad \Delta=(T, z)
$$

- induces $\varphi: G \rightarrow T$
- continuous
- linear on each $e \in E(G)$
(A) for 4 :
(abstract) tropical curve:
$\Gamma=($ finite graph G, length function

$$
\left.\ell: E(G) \rightarrow \mathbb{R}_{\geq 0}\right)
$$

genus:
$g(\Gamma)=$ first Betti number

$$
=\# E(G)-\# V(G)+1
$$

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve Γ to
metric trees
(A) for 4 :
(abstract) tropical curve:
$\Gamma=($ finite graph G, length function

$$
\left.\ell: E(G) \rightarrow \mathbb{R}_{\geq 0}\right)
$$

genus:
$g(\Gamma)=$ first Betti number

$$
=\# E(G)-\# V(G)+1
$$

tropical morphism:

Is a map $\Phi:|\Gamma| \rightarrow|\Delta|$

$$
\Gamma=(G, y) \quad \Delta=(T, z)
$$

- induces $\varphi: G \rightarrow T$
- continuous
- linear on each $e \in E(G)$ with slope $m_{\varphi}(e) \in \mathbb{Z}_{\geq 1}$

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve Γ to
metric trees
(A) for 4 :
(abstract) tropical curve:
$\Gamma=($ finite graph G, length function

$$
\left.\ell: E(G) \rightarrow \mathbb{R}_{\geq 0}\right)
$$

genus:
$g(\Gamma)=$ first Betti number

$$
=\# E(G)-\# V(G)+1
$$

tropical morphism:

Is a map $\Phi:|\Gamma| \rightarrow|\Delta|$

$$
\Gamma=(G, y) \quad \Delta=(T, z)
$$

- induces $\varphi: G \rightarrow T$
- continuous
- linear on each $e \in E(G)$ with slope $m_{\varphi}(e) \in \mathbb{Z}_{\geq 1}$
- (balancing condition) for all $A \in V(G)$

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve Γ to
metric trees
(A) for 4 :
(abstract) tropical curve:
$\Gamma=($ finite graph G, length function

$$
\left.\ell: E(G) \rightarrow \mathbb{R}_{\geq 0}\right)
$$

genus:
$g(\Gamma)=$ first Betti number

$$
=\# E(G)-\# V(G)+1
$$

tropical morphism:

Is a map $\Phi:|\Gamma| \rightarrow|\Delta|$

$$
\Gamma=(G, y) \quad \Delta=(T, z)
$$

- induces $\varphi: G \rightarrow T$
- continuous
- linear on each $e \in E(G)$ with slope $m_{\varphi}(e) \in \mathbb{Z}_{\geq 1}$
- (balancing condition) for all $A \in V(G)$ choose $t \in \uparrow \varphi(A)$

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve Γ to
metric trees
(A) for 4 :
(abstract) tropical curve:
$\Gamma=($ finite graph G, length function

$$
\left.\ell: E(G) \rightarrow \mathbb{R}_{\geq 0}\right)
$$

genus:
$g(\Gamma)=$ first Betti number

$$
=\# E(G)-\# V(G)+1
$$

tropical morphism:

Is a map $\Phi:|\Gamma| \rightarrow|\Delta|$

$$
\Gamma=(G, y) \quad \Delta=(T, z)
$$

- induces $\varphi: G \rightarrow T$
- continuous
- linear on each $e \in E(G)$ with slope $m_{\varphi}(e) \in \mathbb{Z}_{\geq 1}$
- (balancing condition) for all $A \in V(G)$ choose $t \in \uparrow \varphi(A)$ (t is adjacent to A)

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve Γ to
metric trees
(A) for 4 :
(abstract) tropical curve:
$\Gamma=($ finite graph G, length function

$$
\left.\ell: E(G) \rightarrow \mathbb{R}_{\geq 0}\right)
$$

genus:
$g(\Gamma)=$ first Betti number

$$
=\# E(G)-\# V(G)+1
$$

tropical morphism:

Is a map $\Phi:|\Gamma| \rightarrow|\Delta|$

$$
\Gamma=(G, y) \quad \Delta=(T, z)
$$

- induces $\varphi: G \rightarrow T$
- continuous
- linear on each $e \in E(G)$ with slope $m_{\varphi}(e) \in \mathbb{Z}_{\geq 1}$
- (balancing condition) for all
$A \in V(G)$ choose $t \in \uparrow \varphi(A)$
(t is adjacent to A) the number

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve Γ to
metric trees
(A) for 4 :
(abstract) tropical curve:
$\Gamma=($ finite graph G, length function

$$
\left.\ell: E(G) \rightarrow \mathbb{R}_{\geq 0}\right)
$$

genus:
$g(\Gamma)=$ first Betti number

$$
=\# E(G)-\# V(G)+1
$$

tropical morphism:

Is a map $\Phi:|\Gamma| \rightarrow|\Delta|$

$$
\Gamma=(G, y) \quad \Delta=(T, z)
$$

- induces $\varphi: G \rightarrow T$
- continuous
- linear on each $e \in E(G)$ with slope $m_{\varphi}(e) \in \mathbb{Z}_{\geq 1}$
- (balancing condition) for all $A \in V(G)$ choose $t \in \uparrow \varphi(A)$ (t is adjacent to A) the number
$m_{\varphi}(A)=\sum_{e \in \varphi^{-1}(t), e \in \uparrow A} m_{\varphi}(e)$

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve Γ to
metric trees
(A) for 4 :
(abstract) tropical curve:
$\Gamma=($ finite graph G, length function

$$
\left.\ell: E(G) \rightarrow \mathbb{R}_{\geq 0}\right)
$$

genus:
$g(\Gamma)=$ first Betti number

$$
=\# E(G)-\# V(G)+1
$$

tropical morphism:

Is a map $\Phi:|\Gamma| \rightarrow|\Delta|$

$$
\Gamma=(G, y) \quad \Delta=(T, z)
$$

- induces $\varphi: G \rightarrow T$
- continuous
- linear on each $e \in E(G)$ with slope $m_{\varphi}(e) \in \mathbb{Z}_{\geq 1}$
- (balancing condition) for all
$A \in V(G)$ choose $t \in \uparrow \varphi(A)$
(t is adjacent to A) the number
$m_{\varphi}(A)=\sum_{e \in \varphi^{-1}(t), e \in \uparrow A} m_{\varphi}(e)$
is independent of t.

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve Γ to
metric trees
(A) for 4 :
(abstract) tropical curve:
$\Gamma=($ finite graph G, length function

$$
\left.\ell: E(G) \rightarrow \mathbb{R}_{\geq 0}\right)
$$

genus:
$g(\Gamma)=$ first Betti number

$$
=\# E(G)-\# V(G)+1
$$

tropical morphism:

Is a map $\Phi:|\Gamma| \rightarrow|\Delta|$

$$
\Gamma=(G, y) \quad \Delta=(T, z)
$$

- induces $\varphi: G \rightarrow T$
- continuous
- linear on each $e \in E(G)$ with slope $m_{\varphi}(e) \in \mathbb{Z}_{\geq 1}$
- (balancing condition) for all $A \in V(G)$ choose $t \in \uparrow \varphi(A)$ (t is adjacent to A) the number

$$
m_{\varphi}(A)=\sum_{e \in \varphi^{-1}(t), e \in \uparrow A} m_{\varphi}(e)
$$

is independent of t.
well-defined local degree $m_{\varphi}(x)$

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=\operatorname{degree}-\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve Γ to
metric trees
(A) for 4 :
(abstract) tropical curve:
$\Gamma=\left(G, \ell: E(G) \rightarrow \mathbb{R}_{\geq 0}\right)$
genus:
$g(\Gamma)=\# E(G)-\# V(G)+1$
tropical morphism:
$\Phi:|\Gamma| \rightarrow|\Delta|$

- (balancing condition)

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=\operatorname{degree}-\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve Γ to
metric trees
(A) for 4 :
(abstract) tropical curve:
$\Gamma=\left(G, \ell: E(G) \rightarrow \mathbb{R}_{\geq 0}\right)$

genus:

$g(\Gamma)=\# E(G)-\# V(G)+1$

tropical morphism:

$\Phi:|\Gamma| \rightarrow|\Delta|$

- (balancing condition)

$$
m_{\varphi}(A)=\sum_{e \in \varphi^{-1}(t), e \in \uparrow A} m_{\varphi}(e)
$$

- Effective ramification divisor

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=\operatorname{degree}-\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve Γ to
metric trees
(A) for 4 :
(abstract) tropical curve:
$\Gamma=\left(G, \ell: E(G) \rightarrow \mathbb{R}_{\geq 0}\right)$
genus:
$g(\Gamma)=\# E(G)-\# V(G)+1$
tropical morphism:
$\Phi:|\Gamma| \rightarrow|\Delta|$

- (balancing condition)

- Effective ramification divisor rem: is a realizability condition
- degree of Φ : sum of all local degrees over any fiber of $p \in \Delta$

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=\operatorname{degree}-\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve Γ to
metric trees
(A) for 4 :
(abstract) tropical curve:
$\Gamma=\left(G, \ell: E(G) \rightarrow \mathbb{R}_{\geq 0}\right)$
genus:
$g(\Gamma)=\# E(G)-\# V(G)+1$
tropical morphism:
$\Phi:|\Gamma| \rightarrow|\Delta|$

- (balancing condition)

- Effective ramification divisor rem: is a realizability condition
- degree of Φ : sum of all local degrees over any fiber of $p \in \Delta$
- tree genus-0 metric graph

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve Γ to
metric trees
(A) for 4 :
(abstract) tropical curve:
$\Gamma=\left(G, \ell: E(G) \rightarrow \mathbb{R}_{\geq 0}\right)$
genus:
$g(\Gamma)=\# E(G)-\# V(G)+1$
tropical morphism:
$\Phi:|\Gamma| \rightarrow|\Delta|$

- (balancing condition)

- Effective ramification divisor rem: is a realizability condition
- degree of Φ : sum of all local degrees over any fiber of $p \in \Delta$
- tree genus-0 metric graph (there are no cycles)

Examples tropical morphism

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from
genus- $2 g^{\prime}$ tropical curve to

metric trees

(A) for 4 :
(abstract) tropical curve:
$\Gamma=\left(G, \ell: E(G) \rightarrow \mathbb{R}_{\geq 0}\right)$
genus:
$g(\Gamma)=\# E(G)-\# V(G)+1$
tropical morphism:
$\Phi:|\Gamma| \rightarrow|\Delta|$

Examples

Examples tropical morphism

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=\operatorname{degree}-\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to

Examples

metric trees

(A) for 4 :
(abstract) tropical curve:
$\Gamma=\left(G, \ell: E(G) \rightarrow \mathbb{R}_{\geq 0}\right)$
genus:
$g(\Gamma)=\# E(G)-\# V(G)+1$
tropical morphism:
$\Phi:|\Gamma| \rightarrow|\Delta|$

Examples tropical morphism

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=\operatorname{degree}-\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to

Examples

metric trees

(A) for 4 :
(abstract) tropical curve:

$\Gamma=\left(G, \ell: E(G) \rightarrow \mathbb{R}_{\geq 0}\right)$
genus:
$g(\Gamma)=\# E(G)-\# V(G)+1$
tropical morphism:
$\Phi:|\Gamma| \rightarrow|\Delta|$

Examples tropical morphism

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to

metric trees

(A) for 4 :
(abstract) tropical curve:
$\Gamma=\left(G, \ell: E(G) \rightarrow \mathbb{R}_{\geq 0}\right)$
genus:
$g(\Gamma)=\# E(G)-\# V(G)+1$
tropical morphism:
$\Phi:|\Gamma| \rightarrow|\Delta|$

Examples

Rem: middle example obtained from other two

Examples tropical morphism

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to

Examples

metric trees

(A) for 4 :
(abstract) tropical curve:
$\Gamma=\left(G, \ell: E(G) \rightarrow \mathbb{R}_{\geq 0}\right)$
genus:
$g(\Gamma)=\# E(G)-\# V(G)+1$
tropical morphism:
$\Phi:|\Gamma| \rightarrow|\Delta|$

Examples tropical morphism

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to

Examples

metric trees

(A) for 4 :
(abstract) tropical curve:
$\Gamma=\left(G, \ell: E(G) \rightarrow \mathbb{R}_{\geq 0}\right)$
genus:
$g(\Gamma)=\# E(G)-\# V(G)+1$
tropical morphism:
$\Phi:|\Gamma| \rightarrow|\Delta|$

Rem: middle example obtained from other two by contracting one edge suggests how to glue families

Counting tropical morphisms

(A) Some geometrical objects
(B) for 4 :
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to
metric trees
(A) for 4 :
(abstract) tropical curve:
$\Gamma=\left(G, \ell: E(G) \rightarrow \mathbb{R}_{\geq 0}\right)$
genus:
$g(\Gamma)=\# E(G)-\# V(G)+1$
tropical morphism:
$\Phi:|\Gamma| \rightarrow|\Delta|$

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to
metric trees
(A) for 4 :
(abstract) tropical curve:
$\Gamma=\left(G, \ell: E(G) \rightarrow \mathbb{R}_{\geq 0}\right)$
genus:
$g(\Gamma)=\# E(G)-\# V(G)+1$
tropical morphism:
$\Phi:|\Gamma| \rightarrow|\Delta|$
(B) for 4 :

Take a "general" (i.e. trivalent) graph G

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to
metric trees
(A) for 4 :
(abstract) tropical curve:
$\Gamma=\left(G, \ell: E(G) \rightarrow \mathbb{R}_{\geq 0}\right)$
genus:
$g(\Gamma)=\# E(G)-\# V(G)+1$
tropical morphism:
$\Phi:|\Gamma| \rightarrow|\Delta|$
(B) for 4 :

Take a "general" (i.e. trivalent) graph G
$C_{G}=\{$ tropical curves with underlying graph $G\}$

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=\operatorname{degree}-\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to
metric trees
(A) for 4 :
(abstract) tropical curve:
$\Gamma=\left(G, \ell: E(G) \rightarrow \mathbb{R}_{\geq 0}\right)$
genus:
$g(\Gamma)=\# E(G)-\# V(G)+1$
tropical morphism:
$\Phi:|\Gamma| \rightarrow|\Delta|$
(B) for 4 :

Take a "general" (i.e. trivalent) graph G
$C_{G}=\{$ tropical curves with underlying graph $G\}$
Take $\varphi: G \rightarrow T$

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to
metric trees
(A) for 4 :
(abstract) tropical curve:
$\Gamma=\left(G, \ell: E(G) \rightarrow \mathbb{R}_{\geq 0}\right)$
genus:
$g(\Gamma)=\# E(G)-\# V(G)+1$
tropical morphism:
$\Phi:|\Gamma| \rightarrow|\Delta|$
(B) for 4 :

Take a "general" (i.e. trivalent) graph G
$C_{G}=\{$ tropical curves with underlying graph $G\}$
Take $\varphi: G \rightarrow T$
$C_{\varphi}=\{$ tropical morphisms with underlying morphism φ \}

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to
metric trees
(A) for 4 :
(abstract) tropical curve:
$\Gamma=\left(G, \ell: E(G) \rightarrow \mathbb{R}_{\geq 0}\right)$
genus:
$g(\Gamma)=\# E(G)-\# V(G)+1$
tropical morphism:
$\Phi:|\Gamma| \rightarrow|\Delta|$
(B) for 4 :

Take a "general" (i.e. trivalent) graph G
$C_{G}=\{$ tropical curves with underlying graph $G\}$
Take $\varphi: G \rightarrow T$
$C_{\varphi}=\{$ tropical morphisms with underlying morphism $\varphi\}$
Calculate

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=\operatorname{degree}-\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to
metric trees
(A) for 4 :
(abstract) tropical curve:
$\Gamma=\left(G, \ell: E(G) \rightarrow \mathbb{R}_{\geq 0}\right)$
genus:
$g(\Gamma)=\# E(G)-\# V(G)+1$
tropical morphism:
$\Phi:|\Gamma| \rightarrow|\Delta|$
(B) for 4 :

Take a "general" (i.e. trivalent) graph G
$C_{G}=\{$ tropical curves with underlying graph $G\}$
Take $\varphi: G \rightarrow T$
$C_{\varphi}=\{$ tropical morphisms with underlying morphism φ \}
Calculate $\operatorname{dim} C_{G}=3 g-3$

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=\operatorname{degree}-\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to
metric trees
(A) for 4 :
(abstract) tropical curve:
$\Gamma=\left(G, \ell: E(G) \rightarrow \mathbb{R}_{\geq 0}\right)$

genus:

$g(\Gamma)=\# E(G)-\# V(G)+1$

tropical morphism:

$\Phi:|\Gamma| \rightarrow|\Delta|$
(B) for 4 :

Take a "general" (i.e. trivalent) graph G
$C_{G}=\{$ tropical curves with underlying graph $G\}$
Take $\varphi: G \rightarrow T$
$C_{\varphi}=\{$ tropical morphisms with underlying morphism φ \}
Calculate $\operatorname{dim} C_{G}=3 g-3$
$\operatorname{dim} C_{\varphi}=2 g+2 d-5$

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=\operatorname{degree}-\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to
metric trees
(A) for 4 :
(abstract) tropical curve:
$\Gamma=\left(G, \ell: E(G) \rightarrow \mathbb{R}_{\geq 0}\right)$
genus:
$g(\Gamma)=\# E(G)-\# V(G)+1$
tropical morphism:
$\Phi:|\Gamma| \rightarrow|\Delta|$
(B) for 4 :

Take a "general" (i.e. trivalent) graph G
$C_{G}=\{$ tropical curves with underlying graph $G\}$
Take $\varphi: G \rightarrow T$
$C_{\varphi}=\{$ tropical morphisms with underlying morphism φ \}
Calculate $\operatorname{dim} C_{G}=3 g-3$
$\operatorname{dim} C_{\varphi}=2 g+2 d-5$
Finite answer if

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=\operatorname{degree}-\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to
metric trees
(A) for 4 :
(abstract) tropical curve:
$\Gamma=\left(G, \ell: E(G) \rightarrow \mathbb{R}_{\geq 0}\right)$
genus:
$g(\Gamma)=\# E(G)-\# V(G)+1$
tropical morphism:
$\Phi:|\Gamma| \rightarrow|\Delta|$
(B) for 4 :

Take a "general" (i.e. trivalent) graph G
$C_{G}=\{$ tropical curves with underlying graph $G\}$
Take $\varphi: G \rightarrow T$
$C_{\varphi}=\{$ tropical morphisms with underlying morphism φ \}
Calculate $\operatorname{dim} C_{G}=3 g-3$ $\operatorname{dim} C_{\varphi}=2 g+2 d-5$
Finite answer if

$$
\operatorname{dim} C_{G}=\operatorname{dim} C_{\varphi}
$$

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=\operatorname{degree}-\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to
metric trees
(A) for 4 :
(abstract) tropical curve:
$\Gamma=\left(G, \ell: E(G) \rightarrow \mathbb{R}_{\geq 0}\right)$
genus:
$g(\Gamma)=\# E(G)-\# V(G)+1$
tropical morphism:
$\Phi:|\Gamma| \rightarrow|\Delta|$
(B) for 4 :

Take a "general" (i.e. trivalent) graph G
$C_{G}=\{$ tropical curves with underlying graph $G\}$
Take $\varphi: G \rightarrow T$
$C_{\varphi}=\{$ tropical morphisms with underlying morphism φ \}
Calculate $\operatorname{dim} C_{G}=3 g-3$ $\operatorname{dim} C_{\varphi}=2 g+2 d-5$
Finite answer if

$$
\operatorname{dim} C_{G}=\operatorname{dim} C_{\varphi}
$$

Thus, $\quad \operatorname{deg} \varphi=g^{\prime}+1$

Counting tropical morphisms

(A) Some geometrical objects
(B) Some conditions
(?) How many in (A) satisfy (B) ?
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to
metric trees
(A) for 4 :
(abstract) tropical curve:
$\Gamma=\left(G, \ell: E(G) \rightarrow \mathbb{R}_{\geq 0}\right)$
genus:
$g(\Gamma)=\# E(G)-\# V(G)+1$
tropical morphism:
$\Phi:|\Gamma| \rightarrow|\Delta|$
(B) for 4 :

Take a "general" (i.e. trivalent) graph G
$C_{G}=\{$ tropical curves with underlying graph $G\}$
Take $\varphi: G \rightarrow T$
$C_{\varphi}=\{$ tropical morphisms with underlying morphism φ \}
Calculate $\operatorname{dim} C_{G}=3 g-3$
$\operatorname{dim} C_{\varphi}=2 g+2 d-5$
Finite answer if $\operatorname{dim} C_{G}=\operatorname{dim} C_{\varphi}$
Thus, $\quad \operatorname{deg} \varphi=g^{\prime}+1$
? What is $C^{\text {trop }}\left(g^{\prime}\right)$?

Enumerative geometry - A solution

A recipe for solution

Enumerative geometry - A solution

A recipe for solution
follow three steps:

Enumerative geometry - A solution

A recipe for solution
follow three steps:
(1) Put a geometry on (A)

Enumerative geometry - A solution

A recipe for solution

follow three steps:
(1) Put a geometry on (A)
(II) Consider locus of solution and deform it.

Enumerative geometry - A solution

A recipe for solution

follow three steps:
(1) Put a geometry on (A)
(II) Consider locus of solution and deform it.
(III) Find a favorable situation to do the count.

Enumerative geometry - A solution

A recipe for solution

follow three steps:
(1) Put a geometry on (A)
(II) Consider locus of solution and deform it.
(III) Find a favorable situation to do the count.
$C^{\text {trop }}\left(g^{\prime}\right)=\operatorname{degree}-\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to metric trees

Enumerative geometry - A solution

A recipe for solution

follow three steps:
(1) Put a geometry on (A)
(II) Consider locus of solution and deform it.
(III) Find a favorable situation to do the count.
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to
metric trees
(1) for 4 :

Enumerative geometry - A solution

A recipe for solution

follow three steps:
(1) Put a geometry on (A)
(II) Consider locus of solution and deform it.
(III) Find a favorable situation to do the count.
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from
genus- $2 g^{\prime}$ tropical curve to
metric trees
(1) for 4 :

Put a geometry on C_{G} and C_{φ}

Enumerative geometry - A solution

A recipe for solution follow three steps:

- C_{G} is naively easy
(1) Put a geometry on (A)
(II) Consider locus of solution and deform it.
(III) Find a favorable situation to do the count.
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to metric trees
(1) for 4 :

Put a geometry on C_{G} and C_{φ}

Enumerative geometry - A solution

A recipe for solution follow three steps:
(1) Put a geometry on (A)
(II) Consider locus of solution and deform it.
(III) Find a favorable situation to do the count.
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to metric trees
(1) for 4 :

Put a geometry on C_{G} and C_{φ}

- C_{G} is naively easy

Enumerative geometry - A solution

A recipe for solution follow three steps:
(1) Put a geometry on (A)
(II) Consider locus of solution and deform it.
(III) Find a favorable situation to do the count.
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to metric trees
(1) for 4 :

Put a geometry on C_{G} and C_{φ}

- C_{G} is naively easy

- but, account for isometry:

Enumerative geometry - A solution

A recipe for solution follow three steps:
(1) Put a geometry on (A)
(II) Consider locus of solution and deform it.
(III) Find a favorable situation to do the count.
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to metric trees
(1) for 4 :

Put a geometry on C_{G} and C_{φ}

- C_{G} is naively easy

- but, account for isometry:

Enumerative geometry - A solution

A recipe for solution follow three steps:
(1) Put a geometry on (A)
(II) Consider locus of solution and deform it.
(III) Find a favorable situation to do the count.
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to metric trees
(1) for 4 :

Put a geometry on C_{G} and C_{φ}

- C_{G} is naively easy

- but, account for isometry:

so define,

Enumerative geometry - A solution

A recipe for solution follow three steps:
(1) Put a geometry on (A)
(II) Consider locus of solution and deform it.
(III) Find a favorable situation to do the count.
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to
metric trees
(1) for 4 :

Put a geometry on C_{G} and C_{φ}

- C_{G} is naively easy

- but, account for isometry:

so define,
TropModel($G)=$ "minimal model"

Enumerative geometry - A solution

A recipe for solution follow three steps:
(1) Put a geometry on (A)
(II) Consider locus of solution and deform it.
(III) Find a favorable situation to do the count.
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to
metric trees
(1) for 4 :

Put a geometry on C_{G} and C_{φ}

- C_{G} is naively easy

- but, account for isometry:

so define,
TropModel(G) = "minimal model"
(whatever minimal is here)

Enumerative geometry - A solution

A recipe for solution follow three steps:
(1) Put a geometry on (A)
(II) Consider locus of solution and deform it.
(III) Find a favorable situation to do the count.
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to
metric trees
(1) for 4 :

Put a geometry on C_{G} and C_{φ}

- C_{G} is naively easy

- but, account for isometry:

so define,
TropModel(G) = "minimal model"
(whatever minimal is here) rem: no valency-2 vertices

Geometry for C_{φ}

A recipe for solution
(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable situation
$C^{\text {trop }}\left(g^{\prime}\right)=\operatorname{degree}-\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to metric trees

Geometry for C_{φ}

A recipe for solution
(1) Put a geometry on (A)
but we want to regard C_{φ} in
(II) Deform locus of solution
(III) Count in a favorable situation
$C^{\text {trop }}\left(g^{\prime}\right)=\operatorname{degree}-\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to

metric trees

- C_{φ} also naively easy

$$
l_{G} \stackrel{\leftarrow i n d u c e s}{ } l_{T}
$$

Geometry for C_{φ}

A recipe for solution
(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable situation
$C^{\text {trop }}\left(g^{\prime}\right)=\operatorname{degree}-\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to

metric trees

- C_{φ} also naively easy

$$
l_{G} \stackrel{\leftarrow i n d u c e s}{ } l_{T}
$$

but we want to regard C_{φ} in
$C_{\text {TropModel(G) }}$

Geometry for C_{φ}

A recipe for solution
(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable situation
$C^{\text {trop }}\left(g^{\prime}\right)=\operatorname{degree}-\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to

metric trees

- C_{φ} also naively easy

$$
l_{G} \stackrel{\leftarrow i n d u c e s}{ } l_{T}
$$

but we want to regard C_{φ} in

$$
C_{\text {TropModel(} G)}
$$

the map

Geometry for C_{φ}

A recipe for solution
(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable situation
$C^{\text {trop }}\left(g^{\prime}\right)=\operatorname{degree}-\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to

metric trees

- C_{φ} also naively easy

$$
l_{G} \stackrel{\leftarrow i n d u c e s}{ } l_{T}
$$

but we want to regard C_{φ} in

$$
C_{\text {TropModel(} G)}
$$

the map

$$
A_{\varphi}: C_{\varphi} \rightarrow C_{\text {TropModel }(G)}
$$

Geometry for C_{φ}

A recipe for solution
(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable situation
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to

metric trees

- C_{φ} also naively easy

$$
l_{G} \stackrel{\leftarrow i n d u c e s}{ } l_{T}
$$

but we want to regard C_{φ} in

$$
C_{\text {TropModel(G) }}
$$

the map

$$
A_{\varphi}: C_{\varphi} \rightarrow C_{\text {TropModel }(G)}
$$

is linear.

Geometry for C_{φ}

A recipe for solution
(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable situation
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to

metric trees

- C_{φ} also naively easy

but we want to regard C_{φ} in

$$
C_{\text {TropModel(G) }}
$$

the map

$$
A_{\varphi}: C_{\varphi} \rightarrow C_{\text {TropModel }(G)}
$$

is linear.
only consider φ s.t. A_{φ} is
injective

Geometry for C_{φ}

A recipe for solution
(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable situation
$C^{\text {trop }}\left(g^{\prime}\right)=\operatorname{degree}-\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to

metric trees

- C_{φ} also naively easy

but we want to regard C_{φ} in

$$
C_{\text {TropModel(G) }}
$$

the map

$$
A_{\varphi}: C_{\varphi} \rightarrow C_{\text {TropModel }(G)}
$$

is linear.
only consider φ s.t. A_{φ} is
injective
Rem. count for ? is right for generic 「

Geometry for C_{φ}

A recipe for solution
(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable situation
$C^{\text {trop }}\left(g^{\prime}\right)=\operatorname{degree}-\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to

metric trees

- C_{φ} also naively easy

but we want to regard C_{φ} in

$$
C_{\text {TropModel(} G)}
$$

the map

$$
A_{\varphi}: C_{\varphi} \rightarrow C_{\text {TropModel(G) }}
$$

is linear.
only consider φ s.t. A_{φ} is
injective
Rem. count for ? is right for generic 「
and lower bounds count for special 「

Geometry for C_{φ}

A recipe for solution
(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable situation
$C^{\text {trop }}\left(g^{\prime}\right)=\operatorname{degree}-\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to

metric trees

- C_{φ} also naively easy

but we want to regard C_{φ} in

$$
C_{\text {TropModel(} G \text { (}}
$$

the map

$$
A_{\varphi}: C_{\varphi} \rightarrow C_{\text {TropModel(G) }}
$$

is linear.
only consider φ s.t. A_{φ} is
injective
Rem. count for ? is right for generic 「
and lower bounds count for special 「
(as in classical brill noether theory)

Deforming tropical morphisms

A recipe for solution
(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable
situation
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from
genus- $2 g^{\prime}$ tropical curve to
metric trees
(1) for 4 :

Put a geometry on C_{G} and C_{φ}

Deforming tropical morphisms

A recipe for solution
(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable
situation
$C^{\text {trop }}\left(g^{\prime}\right)=\operatorname{degree}-\left(g^{\prime}+1\right)$
tropical morphisms from
genus- $2 g^{\prime}$ tropical curve to
metric trees
(1) for 4 :

Put a geometry on C_{G} and C_{φ}
(II) for 4 :

Idea is to lift deformation paths

Deforming tropical morphisms

A recipe for solution
(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable situation

$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to

metric trees

(1) for 4 :

Put a geometry on C_{G} and C_{φ}
(II) for 4 :

Idea is to lift deformation paths

Deforming tropical morphisms

A recipe for solution
(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable situation

$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to

metric trees

(1) for 4 :

Put a geometry on C_{G} and C_{φ}
(II) for 4 :

Idea is to lift deformation paths

Deforming tropical morphisms

A recipe for solution
(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable situation

$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to

metric trees

(1) for 4 :

Put a geometry on C_{G} and C_{φ}
(II) for 4 :

Idea is to lift deformation paths

Deforming tropical morphisms

A recipe for solution

(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable
situation
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to

metric trees

(1) for 4 :

Put a geometry on C_{G} and C_{φ}
(11) for 4 :

draw path in space below lift using that A_{φ} is injective

Deforming tropical morphisms

A recipe for solution

(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable
situation
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to

metric trees

(1) for 4 :

Put a geometry on C_{G} and C_{φ}
(11) for 4 :

draw path in space below lift using that A_{φ} is injective

Deforming tropical morphisms

A recipe for solution
(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable situation
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to
metric trees
(1) for 4 :

Put a geometry on C_{G} and C_{φ}
(II) for 4 :

Idea is to lift deformation paths

For the combinatorics at walls: https://youtu.be/ 28zHtR1Kr4Y?t=40

Caterpillars of loops

A recipe for solution
(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable
situation
$C^{\text {trop }}\left(g^{\prime}\right)=\operatorname{degree}-\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to
metric trees

Caterpillars of loops

A recipe for solution
(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable
situation
$C^{\text {trop }}\left(g^{\prime}\right)=\operatorname{degree}-\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to
metric trees
(1) for 4 :

Put a geometry on C_{G} and C_{φ}
(II) for 4 :

Lift deformation paths

Caterpillars of loops

$$
\text { (III) for } 4 \text { : find "easy" graph }
$$

A recipe for solution
(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable
situation
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to
metric trees
(1) for 4 :

Put a geometry on C_{G} and C_{φ}
(II) for 4 :

Lift deformation paths

Caterpillars of loops

(III) for 4 : find "easy" graph

- caterpillar of loops

A recipe for solution
(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable
situation
$C^{\text {trop }}\left(g^{\prime}\right)=\operatorname{degree}-\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to
metric trees
(1) for 4 :

Put a geometry on C_{G} and C_{φ}
(II) for 4 :

Lift deformation paths

Caterpillars of loops

$$
\text { (III) for } 4 \text { : find "easy" graph }
$$

- caterpillar of loops

A recipe for solution
(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable situation
$C^{\text {trop }}\left(g^{\prime}\right)=\operatorname{degree}-\left(g^{\prime}+1\right)$

tropical morphisms from genus- $2 g^{\prime}$ tropical curve to
metric trees
(1) for 4 :

Put a geometry on C_{G} and C_{φ}
(II) for 4 :

Lift deformation paths

Caterpillars of loops

(III) for 4 : find "easy" graph

- caterpillar of loops

A recipe for solution
(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable situation
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to
metric trees
(1) for 4 :

Put a geometry on C_{G} and C_{φ}
(II) for 4 :

Lift deformation paths

trop. morph. determined by

Caterpillars of loops

(III) for 4 : find "easy" graph

- caterpillar of loops

A recipe for solution
(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable situation
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to
metric trees
(1) for 4 :

Put a geometry on C_{G} and C_{φ}
(II) for 4 :

Lift deformation paths

trop. morph. determined by $m_{1}, m_{2}, \ldots, m_{g-2}, m_{g-1}$

Caterpillars of loops

(III) for 4 : find "easy" graph

- caterpillar of loops

A recipe for solution
(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable situation
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to
metric trees
(1) for 4 :

Put a geometry on C_{G} and C_{φ}
(II) for 4 :

Lift deformation paths

trop. morph. determined by $m_{1}, m_{2}, \ldots, m_{g-2}, m_{g-1}$ of the inner bridges

Caterpillars of loops

A recipe for solution
(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable situation
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to
metric trees
(1) for 4 :

Put a geometry on C_{G} and C_{φ}
(II) for 4 :

Lift deformation paths
(III) for 4 : find "easy" graph

- caterpillar of loops

trop. morph. determined by $m_{1}, m_{2}, \ldots, m_{g-2}, m_{g-1}$ of the inner bridges and correspond to Dyck paths:

Caterpillars of loops

A recipe for solution

(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable situation
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from
genus- $2 g^{\prime}$ tropical curve to

Caterpillars of loops

A recipe for solution

(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable
situation
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to

metric trees

(1) for 4 :

Put a geometry on C_{G} and C_{φ}
(II) for 4 :

Lift deformation paths
(III) for 4 :

Calculate for caterpillar of loops

Caterpillars of loops

A recipe for solution
(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable
situation
$C^{\text {trop }}\left(g^{\prime}\right)=\operatorname{degree}-\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to

metric trees

(1) for 4 :

Put a geometry on C_{G} and C_{φ}
(II) for 4 :

Lift deformation paths
(III) for 4 :

Calculate for caterpillar of loops

Caterpillars of loops

A recipe for solution
(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable
situation
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to

metric trees

(1) for 4 :

Put a geometry on C_{G} and C_{φ}
(II) for 4 :

Lift deformation paths
(III) for 4 :

Calculate for caterpillar of loops

Is a lattice path that

Caterpillars of loops

A recipe for solution
(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable
situation
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to

metric trees

(1) for 4 :

Put a geometry on C_{G} and C_{φ}
(II) for 4 :

Lift deformation paths
(III) for 4 :

Calculate for caterpillar of loops

Is a lattice path that

- starts and ends at $y=0$

Caterpillars of loops

A recipe for solution
(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable
situation
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to

metric trees

(1) for 4 :

Put a geometry on C_{G} and C_{φ}
(II) for 4 :

Lift deformation paths
(III) for 4 :

Calculate for caterpillar of loops

Is a lattice path that

- starts and ends at $y=0$
- each step: up/down by 1

Caterpillars of loops

A recipe for solution
(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable
situation
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to

metric trees

(1) for 4 :

Put a geometry on C_{G} and C_{φ}
(II) for 4 :

Lift deformation paths
(III) for 4 :

Calculate for caterpillar of loops

Is a lattice path that

- starts and ends at $y=0$
- each step: up/down by 1
- never below x-axis

Caterpillars of loops

A recipe for solution
(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable
situation
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to

metric trees

(1) for 4 :

Put a geometry on C_{G} and C_{φ}
(II) for 4 :

Lift deformation paths
(III) for 4 :

Calculate for caterpillar of loops

Is a lattice path that

- starts and ends at $y=0$
- each step: up/down by 1
- never below x-axis
$C^{\text {trop }}\left(g^{\prime}\right)=\#$ dyck paths length 2 g '

Caterpillars of loops

A recipe for solution
(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable situation
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to

metric trees

(1) for 4 :

Put a geometry on C_{G} and C_{φ}
(II) for 4 :

Lift deformation paths
(III) for 4 :

Calculate for caterpillar of loops

Is a lattice path that

- starts and ends at $y=0$
- each step: up/down by 1
- never below x-axis
$C^{\text {trop }}\left(g^{\prime}\right)=\#$ dyck paths length 2 g '

$$
=\frac{1}{g^{\prime}+1}\binom{2 g^{\prime}}{g^{\prime}}
$$

Caterpillars of loops

A recipe for solution
(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable situation
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to

metric trees

(1) for 4 :

Put a geometry on C_{G} and C_{φ}
(II) for 4 :

Lift deformation paths
(III) for 4 :

Calculate for caterpillar of loops

Is a lattice path that

- starts and ends at $y=0$
- each step: up/down by 1
- never below x-axis
$C^{\text {trop }}\left(g^{\prime}\right)=\#$ dyck paths length 2 g '

$$
=\frac{1}{g^{\prime}+1}\binom{2 g^{\prime}}{g^{\prime}}
$$

so-called catalan number,

Caterpillars of loops

A recipe for solution

(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable situation
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to

metric trees

(1) for 4 :

Put a geometry on C_{G} and C_{φ}
(II) for 4 :

Lift deformation paths
(III) for 4 :

Calculate for caterpillar of loops

Is a lattice path that

- starts and ends at $y=0$
- each step: up/down by 1
- never below x-axis
$C^{\text {trop }}\left(g^{\prime}\right)=\#$ dyck paths length $2 g^{\prime}$

$$
=\frac{1}{g^{\prime}+1}\binom{2 g^{\prime}}{g^{\prime}}
$$

so-called catalan number, as in the classical setting $C\left(g^{\prime}\right)$

Caterpillars of loops

A recipe for solution
(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable
situation
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from
genus- $2 g^{\prime}$ tropical curve to
metric trees
(1) for 4 :

Put a geometry on C_{G} and C_{φ}
(II) for 4 :

Lift deformation paths
(III) for 4 :

Calculate for caterpillar of loops

Caterpillars of loops

A recipe for solution
(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable
situation
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree $-\left(g^{\prime}+1\right)$
tropical morphisms from
genus- $2 g^{\prime}$ tropical curve to
metric trees
(1) for 4 :

Put a geometry on C_{G} and C_{φ}
(II) for 4 :

Lift deformation paths
(III) for 4 :

Calculate for caterpillar of loops

Caterpillars of loops

A recipe for solution
(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable situation
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to
metric trees
(1) for 4 :

Put a geometry on C_{G} and C_{φ}
(II) for 4 :

Lift deformation paths
(III) for 4 :

Calculate for caterpillar of loops

Remarks:

- tropical equivalence also disregards 1 -valent vertices

Caterpillars of loops

A recipe for solution
(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable situation
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to
metric trees
(1) for 4 :

Put a geometry on C_{G} and C_{φ}
(II) for 4 :

Lift deformation paths
(III) for 4 :

Calculate for caterpillar of loops

Remarks:

- tropical equivalence also disregards 1 -valent vertices
- the map

is similar to $\Phi: \Gamma \rightarrow \Delta$

Caterpillars of loops

A recipe for solution
(1) Put a geometry on (A)
(II) Deform locus of solution
(III) Count in a favorable situation
$C^{\text {trop }}\left(g^{\prime}\right)=$ degree- $\left(g^{\prime}+1\right)$
tropical morphisms from genus- $2 g^{\prime}$ tropical curve to
metric trees
(1) for 4 :

Put a geometry on C_{G} and C_{φ}
(II) for 4 :

Lift deformation paths
(III) for 4 :

Calculate for caterpillar of loops

Remarks:

- tropical equivalence also disregards 1 -valent vertices
- the map

is similar to $\Phi: \Gamma \rightarrow \Delta$ there is a category (indexed branched covers) containing both maps.

