Valuated Matroids, Tropicalized Linear Spaces and the Affine Building of $PGL_{r+1}(K)$

Alejandro Vargas Nantes Université / Goethe-Universität Frankfurt

19.05.2023

slides available at https://vargas.page/ arxiv:2304.09146 joint with: Battistella, Kühn, Kuhrs, and Ulirsch

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Goal of project: for non-arch (K, val), fixed r, and varying n
▶ to glue all tropicalizations of linear embeddings \u03c0 : \u03c0^r → \u03c0ⁿ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

▶ to glue all tropicalizations of linear embeddings $\iota : \mathbb{P}^r \to \mathbb{P}^n$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• to describe intrinsically the resulting object $\bar{\mathcal{X}}_r(K)$

▶ to glue all tropicalizations of linear embeddings $\iota : \mathbb{P}^r \to \mathbb{P}^n$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- to describe intrinsically the resulting object $\bar{\mathcal{X}}_r(K)$
- $\bar{\mathcal{X}}_r(K)$ admits an action by $PGL_{r+1}(K)$,

▶ to glue all tropicalizations of linear embeddings $\iota : \mathbb{P}^r \to \mathbb{P}^n$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- to describe intrinsically the resulting object $\bar{\mathcal{X}}_r(K)$
- $\bar{\mathcal{X}}_r(K)$ admits an action by $PGL_{r+1}(K)$,
- ▶ for *K* nice (spherically complete) to show that

- ▶ to glue all tropicalizations of linear embeddings $\iota : \mathbb{P}^r \to \mathbb{P}^n$
- to describe intrinsically the resulting object $\bar{\mathcal{X}}_r(K)$
- $\bar{\mathcal{X}}_r(K)$ admits an action by $PGL_{r+1}(K)$,
- ▶ for *K* nice (spherically complete) to show that
 - $\bar{\mathcal{X}}(K)$ is homeomorphic to affine building (non-trivial val)

- ▶ to glue all tropicalizations of linear embeddings $\iota : \mathbb{P}^r \to \mathbb{P}^n$
- to describe intrinsically the resulting object $\bar{\mathcal{X}}_r(K)$
- $\bar{\mathcal{X}}_r(K)$ admits an action by $PGL_{r+1}(K)$,
- ▶ for *K* nice (spherically complete) to show that
 - $\bar{\mathcal{X}}(K)$ is homeomorphic to affine building (non-trivial val)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

or homeomorphic to cone over spherical building

- ▶ to glue all tropicalizations of linear embeddings $\iota : \mathbb{P}^r \to \mathbb{P}^n$
- to describe intrinsically the resulting object $\bar{\mathcal{X}}_r(K)$
- $\bar{\mathcal{X}}_r(K)$ admits an action by $PGL_{r+1}(K)$,
- ▶ for *K* nice (spherically complete) to show that
 - $\bar{\mathcal{X}}(K)$ is homeomorphic to affine building (non-trivial val)
 - or homeomorphic to cone over spherical building

Motivation: tropical geometry deals with piecewise linear objects that arise as limits of degenerations on classical algebraic varieties

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ▶ to glue all tropicalizations of linear embeddings $\iota : \mathbb{P}^r \to \mathbb{P}^n$
- to describe intrinsically the resulting object $\bar{\mathcal{X}}_r(K)$
- $\bar{\mathcal{X}}_r(K)$ admits an action by $PGL_{r+1}(K)$,
- ▶ for *K* nice (spherically complete) to show that
 - $\bar{\mathcal{X}}(K)$ is homeomorphic to affine building (non-trivial val)
 - or homeomorphic to cone over spherical building

Motivation: tropical geometry deals with piecewise linear objects that arise as limits of degenerations on classical algebraic varieties

Thus, a central question is what information survives this degeneration, and how to reconcile all choices done through the process

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

How to tropicalize affine variety X/ non-archimedean (K, val)?

How to tropicalize affine variety X/non-archimedean (K, val)? val : $K \to \mathbb{R} \cup \infty$ satisfies:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(V1) val $a = \infty$ iff a = 0

How to tropicalize affine variety X/non-archimedean (K, val)? val : $K \to \mathbb{R} \cup \infty$ satisfies:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

(V1) val $a = \infty$ iff a = 0

(V2) val(ab) = val a + val b

How to tropicalize affine variety X/non-archimedean (K, val)? val : $K \to \mathbb{R} \cup \infty$ satisfies:

(V1) val $a = \infty$ iff a = 0

(V2) val(ab) = val a + val b

(V3) $val(a+b) \ge min(val(a), val(b))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

How to tropicalize affine variety X/non-archimedean (K, val)? val : $K \to \mathbb{R} \cup \infty$ satisfies: (V1) val $a = \infty$ iff a = 0

- (V2) val(ab) = val a + val b
- (V3) $val(a+b) \ge min(val(a), val(b))$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

(A) $\operatorname{Trop}(X) = {\operatorname{val}(y_i): y \in X}$

How to tropicalize affine variety X/non-archimedean (K, val)? val : $K \to \mathbb{R} \cup \infty$ satisfies: (V1) val $a = \infty$ iff a = 0

- (V2) val(ab) = val a + val b
- (V3) $val(a+b) \ge min(val(a), val(b))$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

(A) $\operatorname{Trop}(X) = {\operatorname{val}(y_i): y \in X}$

How to tropicalize affine variety X/non-archimedean (K, val)? val : $K \to \mathbb{R} \cup \infty$ satisfies:

(V1) val $a = \infty$ iff a = 0

$$(V2)$$
 val $(ab) =$ val $a +$ val b

(V3) $val(a+b) \ge min(val(a), val(b))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

(A) $\operatorname{Trop}(X) = {\operatorname{val}(y_i): y \in X}$ (B) desc. via initial ideals

How to tropicalize affine variety X/non-archimedean (K, val)? val : $K \to \mathbb{R} \cup \infty$ satisfies: (V1) val $a = \infty$ iff a = 0(V2) val(ab) = val a + val b $(\vee 3)$ val $(a+b) \ge \min(val(a), val(b))$ (A) Trop(X) = {val(y_i): $y \in X$ } B) desc. via initial ideals C) desc. via min attained at least twice in trop equation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

How to tropicalize affine variety X/non-archimedean (K, val)? val : $K \to \mathbb{R} \cup \infty$ satisfies: (V1) val $a = \infty$ iff a = 0(V2) val(ab) = val a + val b(V3) $val(a+b) \ge min(val(a), val(b))$ (A) Trop(X) = {val(y_i): $y \in X$ } B) desc. via initial ideals C desc. via min attained at least twice in trop equation. Motiv: If $\sum t_i = 0$, then min val t_i attained at least twice.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

How to tropicalize affine variety X/non-archimedean (K, val)? val : $K \to \mathbb{R} \cup \infty$ satisfies: (V1) val $a = \infty$ iff a = 0(V2) val(ab) = val a + val b $(\vee 3)$ val $(a+b) \ge \min(\operatorname{val}(a), \operatorname{val}(b))$ (A) Trop(X) = {val(y_i): $y \in X$ } B) desc. via initial ideals C desc. via min attained at least twice in trop equation. Motiv: If $\sum t_i = 0$, then min val t_i attained at least twice.

Sometimes forgotten:

A D N A 目 N A E N A E N A B N A C N

How to tropicalize affine variety X/non-archimedean (K, val)? val : $K \to \mathbb{R} \cup \infty$ satisfies:

- (V1) val $a = \infty$ iff a = 0
- (V2) val(ab) = val a + val b

(V3) $val(a+b) \ge min(val(a), val(b))$

(A) $Trop(X) = {val(y_i): y \in X}$ (B) desc. via initial ideals (C) desc. via min attained at least twice in trop equation.

Motiv: If $\sum t_i = 0$, then min val t_i attained at least twice.

Sometimes forgotten: semivaluation sv : $K \to \mathbb{R} \cup \infty$:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

How to tropicalize affine variety X/non-archimedean (K, val)? val : $K \to \mathbb{R} \cup \infty$ satisfies:

(V1) val $a = \infty$ iff a = 0

$$(V2)$$
 val (ab) = val a + val b

(V3) $val(a+b) \ge min(val(a), val(b))$

(A) Trop(X) = $\{val(y_i): y \in X\}$ (B) desc. via initial ideals (C) desc. via min attained at least twice in trop equation.

Motiv: If $\sum t_i = 0$, then min val t_i attained at least twice.

Sometimes forgotten: semivaluation sv : $K \to \mathbb{R} \cup \infty$: (V'1) sv 0 = ∞ (D) f_i generators of coord. ring K[X]

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

How to tropicalize affine variety X/non-archimedean (K, val)? val : $K \to \mathbb{R} \cup \infty$ satisfies:

(V1) val $a = \infty$ iff a = 0

(V2)
$$val(ab) = val a + val b$$

(V3) $val(a+b) \ge min(val(a), val(b))$

(A) Trop(X) = $\{val(y_i): y \in X\}$ (B) desc. via initial ideals (C) desc. via min attained at least twice in trop equation.

Motiv: If $\sum t_i = 0$, then min val t_i attained at least twice.

Sometimes forgotten: semivaluation sv : $K \to \mathbb{R} \cup \infty$:

(V'1) sv 0 = ∞ (D) f_i generators of coord. ring K[X]consider emedding $\overline{f} = (f_i)$:

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

How to tropicalize affine variety X/non-archimedean (K, val)? val : $K \to \mathbb{R} \cup \infty$ satisfies:

(V1) val $a = \infty$ iff a = 0

$$(V2)$$
 val $(ab) =$ val $a +$ val b

(V3) $val(a+b) \ge min(val(a), val(b))$

(A) Trop(X) = {val(y_i): $y \in X$ } (B) desc. via initial ideals (C) desc. via min attained at least twice in trop equation. Motiv: If $\sum t_i = 0$, then min val t_i

attained at least twice.

Sometimes forgotten: semivaluation sv : $K \to \mathbb{R} \cup \infty$:

(V'1) sv 0 = ∞ (D) f_i generators of coord. ring K[X]consider emedding $\overline{f} = (f_i)$: Trop_{\overline{f}}(X) = { $v'(f_1), \dots, v'(f_n)$:

How to tropicalize affine variety X/non-archimedean (K, val)? val : $K \to \mathbb{R} \cup \infty$ satisfies:

(V1) val $a = \infty$ iff a = 0

$$(V2)$$
 val (ab) = val a + val b

(V3) $val(a+b) \ge min(val(a), val(b))$

(A) Trop(X) = {val(y_i): $y \in X$ } (B) desc. via initial ideals (C) desc. via min attained at least twice in trop equation. Motiv: If $\sum t_i = 0$, then min val t_i

attained at least twice.

Sometimes forgotten: semivaluation sv : $K \to \mathbb{R} \cup \infty$:

(V'1) sv 0 = ∞ (D) f_i generators of coord. ring K[X]consider emedding $\overline{f} = (f_i)$: Trop_{\overline{f}}(X) = { $v'(f_1), \dots, v'(f_n)$: $v' : K[X] \to \mathbb{R}$ extends v}

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

How to tropicalize affine variety X/non-archimedean (K, val)? val : $K \to \mathbb{R} \cup \infty$ satisfies:

(V1) val $a = \infty$ iff a = 0

$$(V2)$$
 val (ab) = val a + val b

$$(V3)$$
 val $(a+b) \ge \min(val(a), val(b))$

(A) $Trop(X) = \{val(y_i): y \in X\}$ (B) desc. via initial ideals (C) desc. via min attained at least twice in trop equation.

Motiv: If $\sum t_i = 0$, then min val t_i attained at least twice.

Sometimes forgotten: semivaluation sv : $K \to \mathbb{R} \cup \infty$:

(V'1) sv 0 = ∞ (D) f_i generators of coord. ring K[X]consider emedding $\overline{f} = (f_i)$: Trop_{\overline{f}}(X) = { $v'(f_1), \ldots, v'(f_n)$: $v' : K[X] \rightarrow \mathbb{R}$ extends v}

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

Surprise surprise:

How to tropicalize affine variety X/non-archimedean (K, val)? val : $K \to \mathbb{R} \cup \infty$ satisfies:

(V1) val $a = \infty$ iff a = 0

 $(V2) \operatorname{val}(ab) = \operatorname{val} a + \operatorname{val} b$

(V3) $val(a+b) \ge min(val(a), val(b))$

(A) $Trop(X) = \{val(y_i): y \in X\}$ (B) desc. via initial ideals (C) desc. via min attained at least twice in trop equation.

Motiv: If $\sum t_i = 0$, then min val t_i attained at least twice.

Sometimes forgotten: semivaluation sv : $K \to \mathbb{R} \cup \infty$:

(V'1) sv $0 = \infty$

(D) f_i generators of coord. ring K[X] consider emedding $\overline{f} = (f_i)$:

$$\begin{aligned} \mathsf{Trop}_{\overline{f}}(X) &= \{ v'(f_1), \dots, v'(f_n) \colon \\ v' &: \mathcal{K}[X] \to \mathbb{\bar{R}} \text{ extends } v \end{aligned}$$

Surprise surprise:

Under appropiate conditions, all are the same [MS15; Dra08].

How to tropicalize affine variety X/non-archimedean (K, val)? val : $K \to \mathbb{R} \cup \infty$ satisfies:

(V1) val $a = \infty$ iff a = 0

$$(V2)$$
 val (ab) = val a + val b

(V3)
$$val(a+b) \ge min(val(a), val(b))$$

(A) Trop(X) = {val(y_i): $y \in X$ } (B) desc. via initial ideals (C) desc. via min attained at least twice in trop equation.

Motiv: If $\sum t_i = 0$, then min val t_i attained at least twice.

Sometimes forgotten: semivaluation sv : $K \to \mathbb{R} \cup \infty$:

(V'1) sv $0 = \infty$

(D) f_i generators of coord. ring K[X] consider emedding $\overline{f} = (f_i)$:

$$\begin{aligned} \mathsf{Trop}_{\overline{f}}(X) &= \{ v'(f_1), \dots, v'(f_n) \colon \\ v' &: \mathcal{K}[X] \to \mathbb{\bar{R}} \text{ extends } v \end{aligned}$$

Surprise surprise:

Under appropiate conditions, all are the same [MS15; Dra08].

Crucial: Description \bigcirc suggests Trop is a **projection** of a space of semivaluations, a gigantic object.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

So Trop is projection of big space of v'.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

So Trop is projection of big space of v'. Can we reassemble it?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

So Trop is projection of big space of v'. Can we reassemble it?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

(semi)val gives (semi)norm:

So Trop is projection of big space of v'. Can we reassemble it?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

(semi)val gives (semi)norm: $|a| = \exp(-\operatorname{val} a).$

So Trop is projection of big space of v'. Can we reassemble it?

(semi)val gives (semi)norm: $|a| = \exp(-\operatorname{val} a).$

Berkovich analytification $X^{an} =$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

So Trop is projection of big space of v'. Can we reassemble it?

(semi)val gives (semi)norm: $|a| = \exp(-\operatorname{val} a).$

Berkovich analytification $X^{an} =$ {multipli. seminorms $|.|_x$ on K[X]}

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

So Trop is projection of big space of v'. Can we reassemble it?

(semi)val gives (semi)norm: $|a| = \exp(-\operatorname{val} a).$

Berkovich analytification $X^{an} =$ {multipli. seminorms $|.|_x$ on K[X]}

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

By [Pay08] we have:

So Trop is projection of big space of v'. Can we reassemble it?

(semi)val gives (semi)norm: $|a| = \exp(-\operatorname{val} a).$

Berkovich analytification $X^{an} =$ {multipli. seminorms $|.|_x$ on K[X]}

By [Pay08] we have: "analytification is the limit of all tropicalizations"

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

So Trop is projection of big space of v'. Can we reassemble it?

(semi)val gives (semi)norm: $|a| = \exp(-\operatorname{val} a).$

Berkovich analytification $X^{an} =$ {multipli. seminorms $|.|_x$ on K[X]}

By [Pay08] we have: *"analytification is the limit of all tropicalizations"* (come to Stefano's talk for details)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

So Trop is projection of big space of v'. Can we reassemble it?

(semi)val gives (semi)norm: $|a| = \exp(-\operatorname{val} a).$

Berkovich analytification $X^{an} =$ {multipli. seminorms $|.|_x$ on K[X]}

By [Pay08] we have: *"analytification is the limit of all tropicalizations"* (come to Stefano's talk for details)

Berkovich projective line, by Baker and Silverman:

So Trop is projection of big space of v'. Can we reassemble it?

(semi)val gives (semi)norm: $|a| = \exp(-\operatorname{val} a).$

Berkovich analytification $X^{an} =$ {multipli. seminorms $|.|_x$ on K[X]}

By [Pay08] we have: *"analytification is the limit of all tropicalizations"* (come to Stefano's talk for details)

Berkovich projective line, by Baker and Silverman: Several types of points:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

So Trop is projection of big space of v'. Can we reassemble it?

(semi)val gives (semi)norm: $|a| = \exp(-\operatorname{val} a).$

Berkovich analytification $X^{an} =$ {multipli. seminorms $|.|_x$ on K[X]}

By [Pay08] we have: *"analytification is the limit of all tropicalizations"* (come to Stefano's talk for details)

Berkovich projective line, by Baker and Silverman: Several types of points:

Type I: X embeds into them

So Trop is projection of big space of v'. Can we reassemble it?

(semi)val gives (semi)norm: $|a| = \exp(-\operatorname{val} a).$

Berkovich analytification $X^{an} =$ {multipli. seminorms $|.|_x$ on K[X]}

By [Pay08] we have:

"analytification is the limit of all tropicalizations" (come to Stefano's talk for details)

Berkovich projective line, by Baker and Silverman: Several types of points:

Type I: X embeds into them Type II: Branching (directions described by $\mathbb{P}(k)$), $k = \operatorname{val}^{-1}(\geq 0)/\operatorname{val}^{-1}(\geq 1)$)

So Trop is projection of big space of v'. Can we reassemble it?

(semi)val gives (semi)norm: $|a| = \exp(-\operatorname{val} a).$

Berkovich analytification $X^{an} =$ {multipli. seminorms $|.|_x$ on K[X]}

By [Pay08] we have:

"analytification is the limit of all tropicalizations" (come to Stofane's talk for

(come to Stefano's talk for details)

Berkovich projective line, by Baker and Silverman: Several types of points:

Type I: X embeds into them Type II: Branching (directions described by $\mathbb{P}(k)$), $k = \operatorname{val}^{-1}(\geq 0)/\operatorname{val}^{-1}(\geq 1)$) Type III: discs with radius not in im val

So Trop is projection of big space of v'. Can we reassemble it?

(semi)val gives (semi)norm: $|a| = \exp(-\operatorname{val} a).$

Berkovich analytification $X^{an} =$ {multipli. seminorms $|.|_x$ on K[X]}

By [Pay08] we have:

"analytification is the limit of all tropicalizations"

(come to Stefano's talk for details)

Berkovich projective line, by Baker and Silverman: Several types of points:

Type I: X embeds into them Type II: Branching (directions described by $\mathbb{P}(k)$), $k = val^{-1} (\geq 0)/val^{-1} (\geq 1)$) Type III: discs with radius not in im val Type IV: absent if K spherically complete (*no cauterizations*)

"analytification is the limit of all tropicalizations"

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

"analytification is the limit of all tropicalizations"

 $X^{\mathrm{an}} \sim \varprojlim \operatorname{Trop}(X, \iota)$

"analytification is the limit of all tropicalizations"

 $X^{\text{an}} \sim \varprojlim_{\iota} (X, \iota)$ $\pi_{\iota}(X) = (-\log |f_1|_X, \dots, -\log |f_n|_X)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

"analytification is the limit of all tropicalizations"

 $X^{\mathrm{an}} \sim \varprojlim_{\pi_{\iota}} \operatorname{Trop} (X, \iota)$ $\pi_{\iota}(x) = (-\log |f_1|_x, \dots, -\log |f_n|_x)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Now assume ι is linear, i.e. deg $f_i = 1$

"analytification is the limit of all tropicalizations"

 $X^{\mathrm{an}} \sim \varprojlim_{\iota} \operatorname{Trop} (X, \iota)$ $\pi_{\iota}(x) = (-\log |f_1|_x, \dots, -\log |f_n|_x)$

Now assume ι is linear, i.e. deg $f_i = 1$ $\varprojlim \pi_{\iota}$ factors thru. a retraction:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

"analytification is the limit of all tropicalizations"

 $\begin{array}{l} X^{\mathsf{an}} \sim \varprojlim \mathsf{Trop}\left(X, \iota\right) \\ \pi_{\iota}(x) = (-\log |f_1|_x, \dots, -\log |f_n|_x) \end{array}$

Now assume ι is linear, i.e. deg $f_i = 1$ $\varprojlim \pi_{\iota}$ factors thru. a retraction: $X^{an} \xrightarrow{\tau} \overline{\mathcal{N}}(X) \xrightarrow{\text{Trop}} \varprojlim \text{Trop}(X, \iota)$

"analytification is the limit of all tropicalizations" $X^{an} \sim \lim \text{Trop}(X, \iota)$

 $\pi_{\iota}(x) \stackrel{\longleftarrow}{=} (-\log|f_1|_x, \dots, -\log|f_n|_x)$

Now assume ι is linear, i.e. deg $f_i = 1$ $\varprojlim \pi_{\iota}$ factors thru. a retraction: $X^{an} \xrightarrow{\tau} \overline{\mathcal{N}}(X) \xrightarrow{\text{Trop}} \varprojlim \text{Trop}(X, \iota)$ τ restricts $|\cdot|_x$ on K[X] to $||\cdot||_x$ on lin. forms of K[X]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

"analytification is the limit of all tropicalizations"

$$X^{\mathrm{an}} \sim \varprojlim_{\tau_{\iota}} \operatorname{Trop} (X, \iota) \\ \pi_{\iota}(x) = (-\log |f_{1}|_{x}, \dots, -\log |f_{n}|_{x})$$

Now assume ι is linear, i.e. deg $f_i = 1$ $\varprojlim \pi_{\iota}$ factors thru. a retraction: $X^{an} \xrightarrow{\tau} \overline{\mathcal{N}}(X) \xrightarrow{\text{Trop}} \varprojlim \text{Trop}(X, \iota)$ τ restricts $|\cdot|_{X}$ on K[X] to $||\cdot||_{X}$ on lin. forms of K[X] -Particular case: $\overline{\mathcal{N}}_r(K)$ is the Goldman-Iwahori space of seminorms on $(K^r)^*$

A D N A 目 N A E N A E N A B N A C N

"analytification is the limit of all tropicalizations" $X^{an} \sim \lim \operatorname{Trop} (X, \iota)$ $\pi_{\iota}(x) = (-\log |f_1|_{\times}, \dots, -\log |f_n|_{\times})$ Now assume ι is linear. i.e. $\deg f_i = 1$ lim π_{ι} factors thru. a retraction: $X^{\operatorname{an}} \xrightarrow{\tau} \overline{\mathcal{N}}(X) \xrightarrow{\operatorname{Trop}} \lim \operatorname{Trop}(X,\iota)$ τ restricts $|\cdot|_{\gamma}$ on K[X] to $\|\cdot\|_{\mathcal{V}}$ on lin. forms of K[X]

-Particular case: $\overline{\mathcal{N}}_r(K)$ is the Goldman-Iwahori space of seminorms on $(K^r)^*$

-Set
$$\overline{\mathcal{X}}_r(K) = \overline{\mathcal{N}}_r(K) / \sim$$

"analytification is the limit of all tropicalizations"

$$X^{\mathrm{an}} \sim \varprojlim \operatorname{Trop} (X, \iota)$$
$$\pi_{\iota}(x) = (-\log |f_1|_x, \dots, -\log |f_n|_x)$$

Now assume ι is linear, i.e. deg $f_i = 1$ $\varprojlim \pi_{\iota}$ factors thru. a retraction: $X^{an} \xrightarrow{\tau} \overline{\mathcal{N}}(X) \xrightarrow{\text{Trop}} \varprojlim \text{Trop}(X, \iota)$ τ restricts $|\cdot|_{X}$ on K[X] to $||\cdot||_{X}$ on lin. forms of K[X] -Particular case: $\overline{\mathcal{N}}_r(\mathcal{K})$ is the Goldman-Iwahori space of seminorms on $(\mathcal{K}^r)^*$

-Set $\overline{\mathcal{X}}_r(K) = \overline{\mathcal{N}}_r(K) / \sim$ where $\|\cdot\| \sim \|\cdot\|'$ if $\|\cdot\| = \lambda \|\cdot\|'$

"analytification is the limit of all tropicalizations"

$$X^{\mathrm{an}} \sim \varprojlim_{\iota} \operatorname{Trop} (X, \iota)$$
$$\pi_{\iota}(x) = (-\log |f_1|_x, \dots, -\log |f_n|_x)$$

Now assume ι is linear, i.e. deg $f_i = 1$ $\varprojlim \pi_{\iota}$ factors thru. a retraction: $X^{an} \xrightarrow{\tau} \overline{\mathcal{N}}(X) \xrightarrow{\text{Trop}} \varprojlim \text{Trop}(X, \iota)$

 τ restricts $\left|\cdot\right|_{x}$ on K[X] to $\left\|\cdot\right\|_{x}$ on lin. forms of K[X]

-Particular case: $\overline{\mathcal{N}}_r(K)$ is the Goldman-Iwahori space of seminorms on $(K^r)^*$

-Set $\overline{\mathcal{X}}_r(K) = \overline{\mathcal{N}}_r(K) / \sim$ where $\|\cdot\| \sim \|\cdot\|'$ if $\|\cdot\| = \lambda \|\cdot\|'$

Buildings are highly symmetrical spaces with an action of a group.

"analytification is the limit of all tropicalizations"

$$X^{\mathrm{an}} \sim \varprojlim_{\iota} \operatorname{Trop} (X, \iota)$$
$$\pi_{\iota}(x) = (-\log |f_1|_x, \dots, -\log |f_n|_x)$$

Now assume ι is linear, i.e.

 $\deg f_i = 1$

 $\underbrace{\lim_{t \to \infty} \pi_{\iota} \text{ factors thru. a retraction:}}_{X^{\text{an}} \xrightarrow{\tau} \overline{\mathcal{N}}(X) \xrightarrow{\text{Trop}} \underbrace{\lim_{t \to \infty} \text{Trop}}(X, \iota)$

au restricts $\left|\cdot\right|_{x}$ on K[X] to $\left\|\cdot\right\|_{x}$ on lin. forms of K[X]

-Particular case: $\overline{\mathcal{N}}_r(K)$ is the Goldman-Iwahori space of seminorms on $(K^r)^*$

-Set $\overline{\mathcal{X}}_r(K) = \overline{\mathcal{N}}_r(K) / \sim$ where $\|\cdot\| \sim \|\cdot\|'$ if $\|\cdot\| = \lambda \|\cdot\|'$

Buildings are highly symmetrical spaces with an action of a group. They have a polyhedral structure of appartments.

"analytification is the limit of all tropicalizations"

$$X^{\mathrm{an}} \sim \varprojlim_{\iota} \operatorname{Trop} (X, \iota)$$
$$\pi_{\iota}(x) = (-\log |f_1|_x, \dots, -\log |f_n|_x)$$

Now assume ι is linear, i.e.

 $\deg f_i = 1$

 $\underbrace{\lim_{t \to \infty} \pi_{\iota} \text{ factors thru. a retraction:}}_{X^{\text{an}} \xrightarrow{\tau} \overline{\mathcal{N}}(X) \xrightarrow{\text{Trop}} \varprojlim_{\tau} \text{Trop}(X, \iota)$

 $\tau \text{ restricts } \left| \cdot \right|_x \text{ on } K[X] \text{ to } \\ \left\| \cdot \right\|_x \text{ on lin. forms of } K[X]$

-Particular case: $\overline{\mathcal{N}}_r(K)$ is the Goldman-Iwahori space of seminorms on $(K^r)^*$

-Set $\overline{\mathcal{X}}_r(K) = \overline{\mathcal{N}}_r(K) / \sim$ where $\|\cdot\| \sim \|\cdot\|'$ if $\|\cdot\| = \lambda \|\cdot\|'$

Buildings are highly symmetrical spaces with an action of a group. They have a polyhedral structure of appartments.

Q1: How does $PGL_{r+1}(K)$ act on $\overline{\mathcal{X}}_r(K)$?

・ロト・西ト・山田・山田・山下

"analytification is the limit of all tropicalizations"

$$X^{\mathrm{an}} \sim \varprojlim_{\iota} \operatorname{Trop} (X, \iota)$$
$$\pi_{\iota}(x) = (-\log |f_1|_x, \dots, -\log |f_n|_x)$$

Now assume ι is linear, i.e.

 $\deg f_i = 1$

 $\varprojlim_{X^{\mathrm{an}}} \pi_{\iota} \text{ factors thru. a retraction:} \\ \xrightarrow{X^{\mathrm{an}}} \xrightarrow{\tau} \overline{\mathcal{N}}(X) \xrightarrow{\mathrm{Trop}} \varprojlim_{\tau} \mathrm{Trop}(X, \iota)$

 $\begin{aligned} \tau \text{ restricts } \left| \cdot \right|_{x} \text{ on } K[X] \text{ to} \\ \left\| \cdot \right\|_{x} \text{ on lin. forms of } K[X] \end{aligned}$

-Particular case: $\overline{\mathcal{N}}_r(K)$ is the Goldman-Iwahori space of seminorms on $(K^r)^*$

-Set $\overline{\mathcal{X}}_r(K) = \overline{\mathcal{N}}_r(K) / \sim$ where $\|\cdot\| \sim \|\cdot\|'$ if $\|\cdot\| = \lambda \|\cdot\|'$

Buildings are highly symmetrical spaces with an action of a group. They have a polyhedral structure of appartments.

Q1: How does $PGL_{r+1}(K)$ act on $\overline{\mathcal{X}}_r(K)$? Q2: Is $\overline{\mathcal{X}}_r(K)$ the building of $PGL_{r+1}(K)$?

"analytification is the limit of all tropicalizations"

$$X^{\mathrm{an}} \sim \varprojlim_{\tau} \operatorname{Trop} (X, \iota)$$
$$\pi_{\iota}(x) = (-\log |f_1|_x, \dots, -\log |f_n|_x)$$

Now assume ι is linear, i.e.

 $\deg f_i = 1$

 $\underbrace{\lim_{t \to \infty} \pi_{\iota} \text{ factors thru. a retraction:}}_{X^{\text{an}} \xrightarrow{\tau} \overline{\mathcal{N}}(X) \xrightarrow{\text{Trop}} \varprojlim_{\tau} \text{Trop}(X, \iota)$

 $\begin{aligned} \tau \text{ restricts } \left| \cdot \right|_{x} \text{ on } K[X] \text{ to} \\ \left\| \cdot \right\|_{x} \text{ on lin. forms of } K[X] \end{aligned}$

-Particular case: $\overline{\mathcal{N}}_r(K)$ is the Goldman-Iwahori space of seminorms on $(K^r)^*$

-Set $\overline{\mathcal{X}}_r(K) = \overline{\mathcal{N}}_r(K) / \sim$ where $\|\cdot\| \sim \|\cdot\|'$ if $\|\cdot\| = \lambda \|\cdot\|'$

Buildings are highly symmetrical spaces with an action of a group. They have a polyhedral structure of appartments.

Q1: How does $PGL_{r+1}(K)$ act on $\overline{\mathcal{X}}_r(K)$? Q2: Is $\overline{\mathcal{X}}_r(K)$ the building of $PGL_{r+1}(K)$? Q3: Can we recover $\overline{\mathcal{X}}_r(K)$ tropically?

 $\overline{\mathcal{X}}_r(K)$ is the homothety classes of seminorms on $(K^*)^{r+1}$

 $\overline{\mathcal{X}}_r(K)$ is the homothety classes of seminorms on $(K^*)^{r+1}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Diagonalizable seminorms $\overline{\mathcal{B}}_n(\mathcal{K}) \subset \overline{\mathcal{X}}_n(\mathcal{K})$:

 $\overline{\mathcal{X}}_r(K)$ is the homothety classes of seminorms on $(K^*)^{r+1}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Diagonalizable seminorms $\overline{\mathcal{B}}_n(K) \subset \overline{\mathcal{X}}_n(K)$: vec. space V of dim-n

 $\overline{\mathcal{X}}_r(K)$ is the homothety classes of seminorms on $(K^*)^{r+1}$

Diagonalizable seminorms $\overline{\mathcal{B}}_n(\mathcal{K}) \subset \overline{\mathcal{X}}_n(\mathcal{K})$: vec. space V of dim-n choose basis B and $u \in (\mathbb{R} \cup \infty)^n$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $\overline{\mathcal{X}}_r(K)$ is the homothety classes of seminorms on $(K^*)^{r+1}$

Diagonalizable seminorms $\overline{\mathcal{B}}_n(K) \subset \overline{\mathcal{X}}_n(K)$: vec. space V of dim-n choose basis B and $u \in (\mathbb{R} \cup \infty)^n$ for vector $v = \sum_{i \in B} \lambda_i e_i \in V$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $\overline{\mathcal{X}}_r(K)$ is the homothety classes of seminorms on $(K^*)^{r+1}$

Diagonalizable seminorms $\overline{\mathcal{B}}_n(K) \subset \overline{\mathcal{X}}_n(K)$: vec. space V of dim-n choose basis B and $u \in (\mathbb{R} \cup \infty)^n$ for vector $v = \sum_{i \in B} \lambda_i e_i \in V$ $\|v\|_{B,u} = \max_{i \in B} |\lambda_i|_K \exp(-u_i)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $\overline{\mathcal{X}}_r(\mathcal{K})$ is the homothety classes of seminorms on $(\mathcal{K}^*)^{r+1}$

Diagonalizable seminorms $\overline{\mathcal{B}}_n(K) \subset \overline{\mathcal{X}}_n(K)$: vec. space V of dim-n choose basis B and $u \in (\mathbb{R} \cup \infty)^n$ for vector $v = \sum_{i \in B} \lambda_i e_i \in V$ $\|v\|_{B,u} = \max_{i \in B} |\lambda_i|_K \exp(-u_i)$ By work of [Wer04], when val non-trivial, $\overline{\mathcal{B}}_r(K)$ is the compactification of the affine

A D N A 目 N A E N A E N A B N A C N

building for $PGL_{r+1}(K)$

 $\overline{\mathcal{X}}_r(\mathcal{K})$ is the homothety classes of seminorms on $(\mathcal{K}^*)^{r+1}$

Diagonalizable seminorms $\overline{\mathcal{B}}_n(K) \subset \overline{\mathcal{X}}_n(K)$: vec. space V of dim-n choose basis B and $u \in (\mathbb{R} \cup \infty)^n$ for vector $v = \sum_{i \in B} \lambda_i e_i \in V$ $\|v\|_{B,u} = \max_{i \in B} |\lambda_i|_K \exp(-u_i)$ By work of [Wer04], when val non-trivial, $\overline{\mathcal{B}}_r(K)$ is the compactification of the affine building for $PGL_{r+1}(K)$

Appartments indexed by bases B.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $\overline{\mathcal{X}}_r(\mathcal{K})$ is the homothety classes of seminorms on $(\mathcal{K}^*)^{r+1}$

Diagonalizable seminorms $\overline{\mathcal{B}}_n(K) \subset \overline{\mathcal{X}}_n(K)$: vec. space V of dim-n choose basis B and $u \in (\mathbb{R} \cup \infty)^n$ for vector $v = \sum_{i \in B} \lambda_i e_i \in V$ $\|v\|_{B,u} = \max_{i \in B} |\lambda_i|_K \exp(-u_i)$ By work of [Wer04], when val non-trivial, $\overline{\mathcal{B}}_r(K)$ is the compactification of the affine building for $PGL_{r+1}(K)$

Appartments indexed by bases B. $\Phi_B : (\mathbb{R} \cup \infty)^n \to \overline{\mathcal{B}}_r(K)$

 $\overline{\mathcal{X}}_r(\mathcal{K})$ is the homothety classes of seminorms on $(\mathcal{K}^*)^{r+1}$

Diagonalizable seminorms $\overline{\mathcal{B}}_n(K) \subset \overline{\mathcal{X}}_n(K)$: vec. space V of dim-n choose basis B and $u \in (\mathbb{R} \cup \infty)^n$ for vector $v = \sum_{i \in B} \lambda_i e_i \in V$ $\|v\|_{B,u} = \max_{i \in B} |\lambda_i|_K \exp(-u_i)$ By work of [Wer04], when val non-trivial, $\overline{\mathcal{B}}_r(K)$ is the compactification of the affine building for $PGL_{r+1}(K)$

Appartments indexed by bases *B*. $\Phi_B : (\mathbb{R} \cup \infty)^n \to \overline{\mathcal{B}}_r(K)$ $u \mapsto \|\cdot\|_{B,u}$

 $\overline{\mathcal{X}}_r(\mathcal{K})$ is the homothety classes of seminorms on $(\mathcal{K}^*)^{r+1}$

Diagonalizable seminorms $\overline{\mathcal{B}}_n(K) \subset \overline{\mathcal{X}}_n(K)$: vec. space V of dim-n choose basis B and $u \in (\mathbb{R} \cup \infty)^n$ for vector $v = \sum_{i \in B} \lambda_i e_i \in V$ $\|v\|_{B,u} = \max_{i \in B} |\lambda_i|_K \exp(-u_i)$

By work of [Wer04], when val non-trivial, $\overline{B}_r(K)$ is the compactification of the affine building for $PGL_{r+1}(K)$

Appartments indexed by bases *B*. $\Phi_B : (\mathbb{R} \cup \infty)^n \to \overline{\mathcal{B}}_r(K)$ $u \mapsto \|\cdot\|_{B,u}$

FIGURE 2. The affine Bruhat-Tits building $\overline{\mathcal{B}}_1(\mathbb{Q}_2)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $\overline{\mathcal{X}}_r(\mathcal{K})$ is the homothety classes of seminorms on $(\mathcal{K}^*)^{r+1}$

Diagonalizable seminorms $\overline{\mathcal{B}}_n(\mathcal{K}) \subset \overline{\mathcal{X}}_n(\mathcal{K})$: vec. space V of dim-nchoose basis B and $u \in (\mathbb{R} \cup \infty)^n$ for vector $v = \sum_{i \in B} \lambda_i e_i \in V$ $\|v\|_{B,u} = \max_{i \in B} |\lambda_i|_{\mathcal{K}} \exp(-u_i)$

By work of [Wer04], when val non-trivial, $\overline{B}_r(K)$ is the compactification of the affine building for $PGL_{r+1}(K)$

Appartments indexed by bases *B*. $\Phi_B : (\mathbb{R} \cup \infty)^n \to \overline{\mathcal{B}}_r(K)$ $u \mapsto \|\cdot\|_{B,u}$

FIGURE 2. The affine Bruhat-Tits building $\overline{\mathcal{B}}_1(\mathbb{Q}_2)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

If *K* spherically complete: $\overline{\mathcal{B}}_r(K) = \overline{\mathcal{X}}_r(K)$

Valuated matroids

```
Q1: How does PGL_{r+1}(K) act on \overline{\mathcal{X}}_r(K)?
```

```
Q1: How does PGL_{r+1}(K) act on \overline{\mathcal{X}}_r(K)? Nicely on \overline{\mathcal{B}}_r(K)
```

Q1: How does $PGL_{r+1}(K)$ act on $\overline{\mathcal{X}}_r(K)$? Nicely on $\overline{\mathcal{B}}_r(K)$ Q2: Is $\overline{\mathcal{X}}_r(K)$ the building of $PGL_{r+1}(K)$?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Q1: How does $PGL_{r+1}(K)$ act on $\overline{\mathcal{X}}_r(K)$? Nicely on $\overline{\mathcal{B}}_r(K)$ Q2: Is $\overline{\mathcal{X}}_r(K)$ the building of $PGL_{r+1}(K)$? yes

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

```
Q1: How does PGL_{r+1}(K) act on

\overline{\mathcal{X}}_r(K)? Nicely on \overline{\mathcal{B}}_r(K)

Q2: Is \overline{\mathcal{X}}_r(K) the building of

PGL_{r+1}(K)? yes

Q3: Can we recover \overline{\mathcal{X}}_r(K)

tropically?
```



```
Q1: How does PGL_{r+1}(K) act on

\overline{\mathcal{X}}_r(K)? Nicely on \overline{\mathcal{B}}_r(K)

Q2: Is \overline{\mathcal{X}}_r(K) the building of

PGL_{r+1}(K)? yes

Q3: Can we recover \overline{\mathcal{X}}_r(K)

tropically?
```

Thm A: The trop maps induce natural homeomorphism


```
Q1: How does PGL_{r+1}(K) act on

\overline{\mathcal{X}}_r(K)? Nicely on \overline{\mathcal{B}}_r(K)

Q2: Is \overline{\mathcal{X}}_r(K) the building of

PGL_{r+1}(K)? yes

Q3: Can we recover \overline{\mathcal{X}}_r(K)

tropically?
```

Thm A: The trop maps induce natural homeomorphism $\overline{\mathcal{X}}_r(\mathcal{K}) \sim \varprojlim_I \operatorname{Trop} (\mathbb{P}^r, \iota)$

```
Q1: How does PGL_{r+1}(K) act on

\overline{\mathcal{X}}_r(K)? Nicely on \overline{\mathcal{B}}_r(K)

Q2: Is \overline{\mathcal{X}}_r(K) the building of

PGL_{r+1}(K)? yes

Q3: Can we recover \overline{\mathcal{X}}_r(K)

tropically?
```

Thm A: The trop maps induce natural homeomorphism $\overline{\mathcal{X}}_r(K) \sim \varprojlim_I \operatorname{Trop} (\mathbb{P}^r, \iota)$ $I = \text{linear embeddings of } \mathbb{P}^r$

```
Q1: How does PGL_{r+1}(K) act on

\overline{\mathcal{X}}_r(K)? Nicely on \overline{\mathcal{B}}_r(K)

Q2: Is \overline{\mathcal{X}}_r(K) the building of

PGL_{r+1}(K)? yes

Q3: Can we recover \overline{\mathcal{X}}_r(K)

tropically?
```

Thm A: The trop maps induce natural homeomorphism $\overline{\mathcal{X}}_r(\mathcal{K}) \sim \varprojlim_I \operatorname{Trop} (\mathbb{P}^r, \iota)$ $I = \text{linear embeddings of } \mathbb{P}^r$

Compare with Payne:

```
Q1: How does PGL_{r+1}(K) act on

\overline{\mathcal{X}}_r(K)? Nicely on \overline{\mathcal{B}}_r(K)

Q2: Is \overline{\mathcal{X}}_r(K) the building of

PGL_{r+1}(K)? yes

Q3: Can we recover \overline{\mathcal{X}}_r(K)

tropically?
```

Thm A: The trop maps induce natural homeomorphism $\overline{\mathcal{X}}_r(\mathcal{K}) \sim \varprojlim_I \operatorname{Trop} (\mathbb{P}^r, \iota)$ $I = \text{linear embeddings of } \mathbb{P}^r$ Compare with Payne:

 $X = \mathbb{P}^r$

```
Q1: How does PGL_{r+1}(K) act on

\overline{\mathcal{X}}_r(K)? Nicely on \overline{\mathcal{B}}_r(K)

Q2: Is \overline{\mathcal{X}}_r(K) the building of

PGL_{r+1}(K)? yes

Q3: Can we recover \overline{\mathcal{X}}_r(K)

tropically?
```

Thm A: The trop maps induce natural homeomorphism $\overline{\mathcal{X}}_r(\mathcal{K}) \sim \varprojlim_I \operatorname{Trop} (\mathbb{P}^r, \iota)$ $I = \text{linear embeddings of } \mathbb{P}^r$ Compare with Payne: $\mathcal{X} = \mathbb{P}^r$

category I is smaller

```
Q1: How does PGL_{r+1}(K) act on

\overline{\mathcal{X}}_r(K)? Nicely on \overline{\mathcal{B}}_r(K)

Q2: Is \overline{\mathcal{X}}_r(K) the building of

PGL_{r+1}(K)? yes

Q3: Can we recover \overline{\mathcal{X}}_r(K)

tropically?
```

Thm A: The trop maps induce natural homeomorphism $\overline{\mathcal{X}}_r(\mathcal{K}) \sim \varprojlim_I \operatorname{Trop}(\mathbb{P}^r, \iota)$ $I = \text{linear embeddings of } \mathbb{P}^r$ Compare with Payne: $\mathcal{X} = \mathbb{P}^r$ category I is smaller What is $\operatorname{Trop}(\mathbb{P}^r, \iota)$?


```
Q1: How does PGL_{r+1}(K) act on

\overline{\mathcal{X}}_r(K)? Nicely on \overline{\mathcal{B}}_r(K)

Q2: Is \overline{\mathcal{X}}_r(K) the building of

PGL_{r+1}(K)? yes

Q3: Can we recover \overline{\mathcal{X}}_r(K)

tropically?
```

Thm A: The trop maps induce natural homeomorphism $\overline{\mathcal{X}}_r(\mathcal{K}) \sim \varprojlim_I \operatorname{Trop}(\mathbb{P}^r, \iota)$ $I = \text{linear embeddings of } \mathbb{P}^r$ Compare with Payne: $\mathcal{X} = \mathbb{P}^r$ category I is smaller What is $Trop(\mathbb{P}^r, \iota)$? $\iota = (f_i)$ a linear embedding

```
Q1: How does PGL_{r+1}(K) act on

\overline{\mathcal{X}}_r(K)? Nicely on \overline{\mathcal{B}}_r(K)

Q2: Is \overline{\mathcal{X}}_r(K) the building of

PGL_{r+1}(K)? yes

Q3: Can we recover \overline{\mathcal{X}}_r(K)

tropically?
```

Thm A: The trop maps induce natural homeomorphism $\overline{\mathcal{X}}_r(K) \sim \varprojlim_l \operatorname{Trop}\left(\mathbb{P}^r, \iota\right)$ I = linear embeddings of \mathbb{P}^r Compare with Payne: $X = \mathbb{P}^r$ category I is smaller What is $Trop(P^r, \iota)$? $\iota = (f_i)$ a linear embedding associate valuated matroid (E, v) to f_0,\ldots,f_n

```
Q1: How does PGL_{r+1}(K) act on

\overline{\mathcal{X}}_r(K)? Nicely on \overline{\mathcal{B}}_r(K)

Q2: Is \overline{\mathcal{X}}_r(K) the building of

PGL_{r+1}(K)? yes

Q3: Can we recover \overline{\mathcal{X}}_r(K)

tropically?
```

Thm A: The trop maps induce natural homeomorphism $\overline{\mathcal{X}}_r(K) \sim \varprojlim_l \operatorname{Trop}\left(\mathbb{P}^r, \iota\right)$ I = linear embeddings of \mathbb{P}^r Compare with Payne: $X = \mathbb{P}^r$ category *I* is smaller What is $Trop(P^r, \iota)$? $\iota = (f_i)$ a linear embedding associate valuated matroid (E, v) to f_0,\ldots,f_n

Denote by e_B the indicator vector

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

```
Q1: How does PGL_{r+1}(K) act on

\overline{\mathcal{X}}_r(K)? Nicely on \overline{\mathcal{B}}_r(K)

Q2: Is \overline{\mathcal{X}}_r(K) the building of

PGL_{r+1}(K)? yes

Q3: Can we recover \overline{\mathcal{X}}_r(K)

tropically?
```

Thm A: The trop maps induce natural homeomorphism $\overline{\mathcal{X}}_r(K) \sim \varprojlim_l \operatorname{Trop}\left(\mathbb{P}^r, \iota\right)$ I = linear embeddings of \mathbb{P}^r Compare with Payne: $X = \mathbb{P}^r$ category *I* is smaller What is $Trop(P^r, \iota)$? $\iota = (f_i)$ a linear embedding associate valuated matroid (E, v) to f_0,\ldots,f_n

Denote by e_B the indicator vector Matroid is a set of bases $B(M) \subset P(E)$, whose indicators e_B make a polytope,

Q1: How does $PGL_{r+1}(K)$ act on $\overline{\mathcal{X}}_r(K)$? Nicely on $\overline{\mathcal{B}}_r(K)$ Q2: Is $\overline{\mathcal{X}}_r(K)$ the building of $PGL_{r+1}(K)$? yes Q3: Can we recover $\overline{\mathcal{X}}_r(K)$ tropically?

Thm A: The trop maps induce natural homeomorphism $\overline{\mathcal{X}}_r(K) \sim \varprojlim_l \operatorname{Trop}\left(\mathbb{P}^r, \iota\right)$ I = linear embeddings of \mathbb{P}^r Compare with Payne: $X = \mathbb{P}^r$ category I is smaller What is $Trop(P^r, \iota)$? $\iota = (f_i)$ a linear embedding associate valuated matroid (E, v) to f_0,\ldots,f_n

Denote by e_B the indicator vector Matroid is a set of bases $B(M) \subset P(E)$, whose indicators e_B make a polytope, whose edges are parallel translates of $e_i - e_j$

Q1: How does $PGL_{r+1}(K)$ act on $\overline{\mathcal{X}}_r(K)$? Nicely on $\overline{\mathcal{B}}_r(K)$ Q2: Is $\overline{\mathcal{X}}_r(K)$ the building of $PGL_{r+1}(K)$? yes Q3: Can we recover $\overline{\mathcal{X}}_r(K)$ tropically?

Thm A: The trop maps induce natural homeomorphism $\overline{\mathcal{X}}_r(K) \sim \varprojlim_I \operatorname{Trop}(\mathbb{P}^r, \iota)$ $I = \text{linear embeddings of } \mathbb{P}^r$ Compare with Payne: $X = \mathbb{P}^r$ category *I* is smaller What is $Trop(P^r, \iota)$? $\iota = (f_i)$ a linear embedding associate valuated matroid (E, v) to f_0, \ldots, f_n Denote by e_B the indicator vector Matroid is a set of bases $B(M) \subset P(E)$, whose indicators e_B make a polytope, whose edges are parallel translates of $e_i - e_j$ function $v : B(M) \to \mathbb{R}$ is a valuated matroid if induced subdivision is matroidal

Q1: How does $PGL_{r+1}(K)$ act on $\overline{\mathcal{X}}_r(K)$? Nicely on $\overline{\mathcal{B}}_r(K)$ Q2: Is $\overline{\mathcal{X}}_r(K)$ the building of $PGL_{r+1}(K)$? yes Q3: Can we recover $\overline{\mathcal{X}}_r(K)$ tropically?

Thm A: The trop maps induce natural homeomorphism $\overline{\mathcal{X}}_r(K) \sim \underline{\lim}_l \operatorname{Trop}\left(\mathbb{P}^r, \iota\right)$ I = linear embeddings of \mathbb{P}^r Compare with Payne: $X = \mathbb{P}^r$ category *I* is smaller What is $Trop(P^r, \iota)$? $\iota = (f_i)$ a linear embedding associate valuated matroid (E, v) to f_0,\ldots,f_n

Denote by e_B the indicator vector Matroid is a set of bases $B(M) \subset P(E)$, whose indicators e_B make a polytope, whose edges are parallel translates of $e_i - e_j$ function $v : B(M) \rightarrow \mathbb{R}$ is a valuated matroid if induced subdivision is matroidal dual to matroidal subdivision we have linear space $\mathcal{L}(v)$

Q1: How does $PGL_{r+1}(K)$ act on $\overline{\mathcal{X}}_r(K)$? Nicely on $\overline{\mathcal{B}}_r(K)$ Q2: Is $\overline{\mathcal{X}}_r(K)$ the building of $PGL_{r+1}(K)$? yes Q3: Can we recover $\overline{\mathcal{X}}_r(K)$ tropically?

Thm A: The trop maps induce natural homeomorphism $\overline{\mathcal{X}}_r(K) \sim \underline{\lim}_l \operatorname{Trop}\left(\mathbb{P}^r, \iota\right)$ I = linear embeddings of \mathbb{P}^r Compare with Payne: $X = \mathbb{P}^r$ category *I* is smaller What is $Trop(P^r, \iota)$? $\iota = (f_i)$ a linear embedding associate valuated matroid (E, v) to f_0,\ldots,f_n

Denote by e_B the indicator vector Matroid is a set of bases $B(M) \subset P(E)$, whose indicators e_B make a polytope, whose edges are parallel translates of $e_i - e_i$ function $v: B(M) \to \mathbb{R}$ is a valuated matroid if induced subdivision is matroidal dual to matroidal subdivision we have linear space $\mathcal{L}(v)$ satisfies tropical equations for all $\sigma \in \begin{pmatrix} E \\ r+1 \end{pmatrix} \min(u_i + v(\sigma \setminus i))$

Q1: How does $PGL_{r+1}(K)$ act on $\overline{\mathcal{X}}_r(K)$? Nicely on $\overline{\mathcal{B}}_r(K)$ Q2: Is $\overline{\mathcal{X}}_r(K)$ the building of $PGL_{r+1}(K)$? yes Q3: Can we recover $\overline{\mathcal{X}}_r(K)$ tropically?

Thm A: The trop maps induce natural homeomorphism $\overline{\mathcal{X}}_r(K) \sim \varprojlim_I \operatorname{Trop}(\mathbb{P}^r, \iota)$ $I = \text{linear embeddings of } \mathbb{P}^r$ Compare with Payne: $X = \mathbb{P}^r$ category *I* is smaller What is $Trop(P^r, \iota)$? $\iota = (f_i)$ a linear embedding associate valuated matroid (E, v) to f_0, \ldots, f_n

Denote by e_B the indicator vector Matroid is a set of bases $B(M) \subset P(E)$, whose indicators e_B make a polytope, whose edges are parallel translates of $e_i - e_i$ function $v : B(M) \to \mathbb{R}$ is a valuated matroid if induced subdivision is matroidal dual to matroidal subdivision we have linear space $\mathcal{L}(v)$ satisfies tropical equations for all $\sigma \in \left(\underset{r+1}{E} \right) \min(u_i + v(\sigma \setminus i))$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

Q1: How does $PGL_{r+1}(K)$ act on $\overline{\mathcal{X}}_r(K)$? Nicely on $\overline{\mathcal{B}}_r(K)$ Q2: Is $\overline{\mathcal{X}}_r(K)$ the building of $PGL_{r+1}(K)$? yes Q3: Can we recover $\overline{\mathcal{X}}_r(K)$ tropically?

Thm A: The trop maps induce natural homeomorphism $\overline{\mathcal{X}}_r(K) \sim \varprojlim_I \operatorname{Trop}(\mathbb{P}^r, \iota)$ $I = \text{linear embeddings of } \mathbb{P}^r$ Compare with Payne: $X = \mathbb{P}^r$ category *I* is smaller What is $Trop(P^r, \iota)$? $\iota = (f_i)$ a linear embedding associate valuated matroid (E, v) to f_0, \ldots, f_n

Denote by e_B the indicator vector Matroid is a set of bases $B(M) \subset P(E)$, whose indicators e_B make a polytope, whose edges are parallel translates of $e_i - e_i$ function $v : B(M) \to \mathbb{R}$ is a valuated matroid if induced subdivision is matroidal dual to matroidal subdivision we have linear space $\mathcal{L}(v)$ satisfies tropical equations for all $\sigma \in \left(\underset{r+1}{E} \right) \min(u_i + v(\sigma \setminus i))$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

```
How does \operatorname{Trop}(\mathbb{P}^r, \iota) lives inside the building?
```

```
How does \operatorname{Trop}(\mathbb{P}^r, \iota) lives inside the building?
```

Thm B: Let $\iota: \mathbb{P}^r \hookrightarrow \mathbb{P}^n$ be a linear closed immersion.


```
How does \operatorname{Trop}(\mathbb{P}^r, \iota) lives inside the building?
```

```
Thm B: Let \iota : \mathbb{P}^r \hookrightarrow \mathbb{P}^n be a linear closed immersion.
Then there is a natural piecewise linear embedding
```



```
How does \operatorname{Trop}(\mathbb{P}^r, \iota) lives inside the building?
```

```
Thm B: Let \iota : \mathbb{P}^r \hookrightarrow \mathbb{P}^n be a linear closed immersion.
Then there is a natural piecewise linear embedding
J : \operatorname{Trop}(\mathbb{P}^r, \iota) \to \overline{\mathcal{B}}_r(\mathcal{K})
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

How does $\operatorname{Trop}(\mathbb{P}^r, \iota)$ lives inside the building?

Thm B: Let $\iota : \mathbb{P}^r \hookrightarrow \mathbb{P}^n$ be a linear closed immersion. Then there is a natural piecewise linear embedding

J: $\operatorname{Trop}(\mathbb{P}^r, \iota) \to \overline{\mathcal{B}}_r(K)$ such that

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

How does $\operatorname{Trop}(\mathbb{P}^r, \iota)$ lives inside the building?

Thm B: Let $\iota: \mathbb{P}^r \hookrightarrow \mathbb{P}^n$ be a linear closed immersion.

Then there is a natural piecewise linear embedding

J: $\operatorname{Trop}(\mathbb{P}^r, \iota) \to \overline{\mathcal{B}}_r(K)$ such that

Is $\overline{\mathcal{X}}_r(K)$ a tropical linear space?

How does $\operatorname{Trop}(\mathbb{P}^r, \iota)$ lives inside the building?

Thm B: Let $\iota : \mathbb{P}^r \hookrightarrow \mathbb{P}^n$ be a linear closed immersion.

Then there is a natural piecewise linear embedding

J: $\operatorname{Trop}(\mathbb{P}^r, \iota) \to \overline{\mathcal{B}}_r(K)$ such that

 $\overline{\mathcal{B}}_{r}(K) \xleftarrow{J} \operatorname{Trop}(\mathbb{P}^{r}, \iota)$ $\overline{\mathcal{B}}_{(\iota)} \xrightarrow{\overline{\mathcal{B}}_{n}(K)} \xrightarrow{\operatorname{trop}} \mathbb{TP}^{n}.$

Is $\overline{\mathcal{X}}_r(K)$ a tropical linear space?

Consider w_{univ} given by the map

How does $\operatorname{Trop}(\mathbb{P}^r, \iota)$ lives inside the building?

Thm B: Let $\iota : \mathbb{P}^r \hookrightarrow \mathbb{P}^n$ be a linear closed immersion.

Then there is a natural piecewise linear embedding

J: $\operatorname{Trop}(\mathbb{P}^r, \iota) \to \overline{\mathcal{B}}_r(K)$ such that

Is $\overline{\mathcal{X}}_r(K)$ a tropical linear space?

Consider w_{univ} given by the map $w_{\text{univ}} \colon \binom{K^{r+1} \setminus 0}{r+1} \longrightarrow \mathbb{R} \cup \infty$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

How does $\operatorname{Trop}(\mathbb{P}^r, \iota)$ lives inside the building?

Thm B: Let $\iota : \mathbb{P}^r \hookrightarrow \mathbb{P}^n$ be a linear closed immersion.

Then there is a natural piecewise linear embedding

J: $\operatorname{Trop}(\mathbb{P}^r, \iota) \to \overline{\mathcal{B}}_r(K)$ such that

 $\overline{\mathcal{B}}_{r}(K) \xleftarrow{J} \operatorname{Trop}(\mathbb{P}^{r}, \iota)$ $\overline{\mathcal{B}}_{(\iota)} \xleftarrow{\overline{\mathcal{B}}_{n}(K)} \xleftarrow{\operatorname{trop}} \mathbb{TP}^{n}.$

Is $\overline{\mathcal{X}}_r(K)$ a tropical linear space?

Consider w_{univ} given by the map $w_{\text{univ}} : \binom{K^{r+1}\setminus 0}{r+1} \longrightarrow \mathbb{R} \cup \infty$ induced by the permutation-invariant map

・ロト・西ト・モート ヨー うへの

How does $\operatorname{Trop}(\mathbb{P}^r, \iota)$ lives inside the building?

Thm B: Let $\iota : \mathbb{P}^r \hookrightarrow \mathbb{P}^n$ be a linear closed immersion.

Then there is a natural piecewise linear embedding

 $J\colon \operatorname{Trop}(\mathbb{P}^r,\iota) \to \overline{\mathcal{B}}_r(K)$ such that

 $\overline{\mathcal{B}}_{r}(K) \xleftarrow{J} \operatorname{Trop}(\mathbb{P}^{r}, \iota)$ $\overline{\mathcal{B}}_{(\iota)} \xleftarrow{\overline{\mathcal{B}}_{n}(K)} \xrightarrow{\subseteq} \mathbb{TP}^{n}.$

Is $\overline{\mathcal{X}}_r(K)$ a tropical linear space?

Consider w_{univ} given by the map $w_{\text{univ}} : \binom{K^{r+1} \setminus 0}{r+1} \longrightarrow \mathbb{R} \cup \infty$ induced by the permutation-invariant map $w_{\text{univ}}(\sigma) = \text{val} \circ \det \sigma$.

How does $\operatorname{Trop}(\mathbb{P}^r, \iota)$ lives inside the building?

Thm B: Let $\iota : \mathbb{P}^r \hookrightarrow \mathbb{P}^n$ be a linear closed immersion.

Then there is a natural piecewise linear embedding

 $J\colon \operatorname{Trop}(\mathbb{P}^r,\iota) o \overline{\mathcal{B}}_r(K)$ such that

Is $\overline{\mathcal{X}}_r(K)$ a tropical linear space?

Consider w_{univ} given by the map $w_{\text{univ}} : \binom{K^{r+1} \setminus 0}{r+1} \longrightarrow \mathbb{R} \cup \infty$ induced by the permutation-invariant map $w_{\text{univ}}(\sigma) = \text{val} \circ \det \sigma$.

Thm C: *w*_{univ} universal realizable valuated matroid.

How does $\operatorname{Trop}(\mathbb{P}^r, \iota)$ lives inside the building?

Thm B: Let $\iota: \mathbb{P}^r \hookrightarrow \mathbb{P}^n$ be a linear closed immersion.

Then there is a natural piecewise linear embedding

 $J\colon \operatorname{Trop}(\mathbb{P}^r,\iota) o \overline{\mathcal{B}}_r(K)$ such that

Is $\overline{\mathcal{X}}_r(K)$ a tropical linear space?

Consider w_{univ} given by the map $w_{\text{univ}} : \binom{K^{r+1} \setminus 0}{r+1} \longrightarrow \mathbb{R} \cup \infty$ induced by the permutation-invariant map $w_{\text{univ}}(\sigma) = \text{val} \circ \det \sigma$.

Thm C: w_{univ} universal realizable valuated matroid.

Then:

 $\stackrel{\mathfrak{b}}{\to} \mathbb{TP}^n$. $\overline{\mathcal{X}}_r(K) = \mathcal{L}(w_{univ}).$

Future directions

Recover tropically the buildings for other groups.

Future directions

Recover tropically the buildings for other groups. This probably requires developing further the theory of coxeter matroids in tropical geometry.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Future directions

Recover tropically the buildings for other groups. This probably requires developing further the theory of coxeter matroids in tropical geometry. (current cases in literature: Δ -matroids, *B*-type matroids, etc.)

References

- [Dra08] Jan Draisma. "A Tropical Approach to Secant Dimensions". In: Journal of Pure and Applied Algebra 212.2 (2008), pp. 349–363. ISSN: 0022-4049.
- [MS15] Diane Maclagan and Bernd Sturmfels. Introduction to Tropical Geometry. Vol. 161. American Mathematical Soc., 2015. ISBN: 0-8218-5198-5.
- [Pay08] Sam Payne. "Analytification Is the Limit of All Tropicalizations". In: arXiv preprint arXiv:0805.1916 (2008). arXiv: 0805.1916.
- [Wer04] Annette Werner. "Compactification of the Bruhat-Tits Building of PGL by Seminorms". In: Mathematische Zeitschrift 248 (2004), pp. 511–526. ISSN: 0025-5874.

・ロト・日本・モート モー シタイ