Valuated Matroids, Tropicalized Linear Spaces and the Affine Building of $P G L_{r+1}(K)$

Alejandro Vargas
Nantes Université / Goethe-Universität Frankfurt

19.05.2023
slides available at https://vargas.page/ arxiv:2304.09146
joint with: Battistella, Kühn, Kuhrs, and Ulirsch

Goal of project: for non-arch (K, val), fixed r, and varying n

- to glue all tropicalizations of linear embeddings $\iota: \mathbb{P}^{r} \rightarrow \mathbb{P}^{n}$

Goal of project: for non-arch (K, val), fixed r, and varying n

- to glue all tropicalizations of linear embeddings $\iota: \mathbb{P}^{r} \rightarrow \mathbb{P}^{n}$
- to describe intrinsically the resulting object $\overline{\mathcal{X}}_{r}(K)$

Goal of project: for non-arch (K, val), fixed r, and varying n

- to glue all tropicalizations of linear embeddings $\iota: \mathbb{P}^{r} \rightarrow \mathbb{P}^{n}$
- to describe intrinsically the resulting object $\overline{\mathcal{X}}_{r}(K)$
- $\overline{\mathcal{X}}_{r}(K)$ admits an action by $P G L_{r+1}(K)$,

Goal of project: for non-arch (K, val), fixed r, and varying n

- to glue all tropicalizations of linear embeddings $\iota: \mathbb{P}^{r} \rightarrow \mathbb{P}^{n}$
- to describe intrinsically the resulting object $\overline{\mathcal{X}}_{r}(K)$
- $\overline{\mathcal{X}}_{r}(K)$ admits an action by $P G L_{r+1}(K)$,
- for K nice (spherically complete) to show that

Goal of project: for non-arch (K, val), fixed r, and varying n

- to glue all tropicalizations of linear embeddings $\iota: \mathbb{P}^{r} \rightarrow \mathbb{P}^{n}$
- to describe intrinsically the resulting object $\overline{\mathcal{X}}_{r}(K)$
- $\overline{\mathcal{X}}_{r}(K)$ admits an action by $P G L_{r+1}(K)$,
- for K nice (spherically complete) to show that
- $\overline{\mathcal{X}}(K)$ is homeomorphic to affine building (non-trivial val)

Goal of project: for non-arch (K, val), fixed r, and varying n

- to glue all tropicalizations of linear embeddings $\iota: \mathbb{P}^{r} \rightarrow \mathbb{P}^{n}$
- to describe intrinsically the resulting object $\overline{\mathcal{X}}_{r}(K)$
- $\overline{\mathcal{X}}_{r}(K)$ admits an action by $P G L_{r+1}(K)$,
- for K nice (spherically complete) to show that
- $\overline{\mathcal{X}}(K)$ is homeomorphic to affine building (non-trivial val)
- or homeomorphic to cone over spherical building

Goal of project: for non-arch (K, val), fixed r, and varying n

- to glue all tropicalizations of linear embeddings $\iota: \mathbb{P}^{r} \rightarrow \mathbb{P}^{n}$
- to describe intrinsically the resulting object $\overline{\mathcal{X}}_{r}(K)$
- $\overline{\mathcal{X}}_{r}(K)$ admits an action by $P G L_{r+1}(K)$,
- for K nice (spherically complete) to show that
- $\overline{\mathcal{X}}(K)$ is homeomorphic to affine building (non-trivial val)
- or homeomorphic to cone over spherical building

Motivation: tropical geometry deals with piecewise linear objects that arise as limits of degenerations on classical algebraic varieties

Goal of project: for non-arch (K, val), fixed r, and varying n

- to glue all tropicalizations of linear embeddings $\iota: \mathbb{P}^{r} \rightarrow \mathbb{P}^{n}$
- to describe intrinsically the resulting object $\overline{\mathcal{X}}_{r}(K)$
- $\overline{\mathcal{X}}_{r}(K)$ admits an action by $P G L_{r+1}(K)$,
- for K nice (spherically complete) to show that
- $\overline{\mathcal{X}}(K)$ is homeomorphic to affine building (non-trivial val)
- or homeomorphic to cone over spherical building

Motivation: tropical geometry deals with piecewise linear objects that arise as limits of degenerations on classical algebraic varieties

Thus, a central question is what information survives this degeneration, and how to reconcile all choices done through the process

Tropical geometry

Tropical geometry

How to tropicalize affine variety X / non-archimedean (K, val)?

Tropical geometry

How to tropicalize affine variety $X /$ non-archimedean (K, val)? val : $K \rightarrow \mathbb{R} \cup \infty$ satisfies:
(V1) val $a=\infty$ iff $a=0$

Tropical geometry

How to tropicalize affine variety $X /$ non-archimedean (K, val)? val : $K \rightarrow \mathbb{R} \cup \infty$ satisfies:
(V1) val $a=\infty$ iff $a=0$
(V2) $\operatorname{val}(a b)=\operatorname{val} a+\operatorname{val} b$

Tropical geometry

How to tropicalize affine variety $X /$ non-archimedean (K, val)? val : $K \rightarrow \mathbb{R} \cup \infty$ satisfies:
(V1) val $a=\infty$ iff $a=0$
(V2) $\operatorname{val}(a b)=\operatorname{val} a+\operatorname{val} b$
(V3) $\operatorname{val}(a+b) \geq \min (\operatorname{val}(a), \operatorname{val}(b))$

Tropical geometry

How to tropicalize affine variety $X /$ non-archimedean (K, val)? val : $K \rightarrow \mathbb{R} \cup \infty$ satisfies:
(V1) val $a=\infty$ iff $a=0$
(V2) $\operatorname{val}(a b)=\operatorname{val} a+\operatorname{val} b$
(V3) $\operatorname{val}(a+b) \geq \min (\operatorname{val}(a), \operatorname{val}(b))$
(A) $\operatorname{Trop}(X)=\left\{\operatorname{val}\left(y_{i}\right): y \in X\right\}$

Tropical geometry

How to tropicalize affine variety $X /$ non-archimedean (K, val)? val : $K \rightarrow \mathbb{R} \cup \infty$ satisfies:
(V1) val $a=\infty$ iff $a=0$
(V2) $\operatorname{val}(a b)=\operatorname{val} a+\operatorname{val} b$
(V3) $\operatorname{val}(a+b) \geq \min (\operatorname{val}(a), \operatorname{val}(b))$
(A) $\operatorname{Trop}(X)=\left\{\operatorname{val}\left(y_{i}\right): y \in X\right\}$

Tropical geometry

How to tropicalize affine variety $X /$ non-archimedean (K, val)? val : $K \rightarrow \mathbb{R} \cup \infty$ satisfies:
(V1) val $a=\infty$ iff $a=0$
(V2) $\operatorname{val}(a b)=\operatorname{val} a+\operatorname{val} b$
(V3) $\operatorname{val}(a+b) \geq \min (\operatorname{val}(a), \operatorname{val}(b))$
(A) $\operatorname{Trop}(X)=\left\{\operatorname{val}\left(y_{i}\right): y \in X\right\}$
(B) desc. via initial ideals

Tropical geometry

How to tropicalize affine variety $X /$ non-archimedean (K, val)? val : $K \rightarrow \mathbb{R} \cup \infty$ satisfies:
(V1) val $a=\infty$ iff $a=0$
(V2) $\operatorname{val}(a b)=\operatorname{val} a+\operatorname{val} b$
(V3) $\operatorname{val}(a+b) \geq \min (\operatorname{val}(a), \operatorname{val}(b))$
(A) $\operatorname{Trop}(X)=\left\{\operatorname{val}\left(y_{i}\right): y \in X\right\}$
(B) desc. via initial ideals
(C) desc. via min attained at least twice in trop equation.

Tropical geometry

How to tropicalize affine variety $X /$ non-archimedean (K, val)? val : $K \rightarrow \mathbb{R} \cup \infty$ satisfies:
(V1) val $a=\infty$ iff $a=0$
(V2) $\operatorname{val}(a b)=\operatorname{val} a+\operatorname{val} b$
(V3) $\operatorname{val}(a+b) \geq \min (\operatorname{val}(a), \operatorname{val}(b))$
(A) $\operatorname{Trop}(X)=\left\{\operatorname{val}\left(y_{i}\right): y \in X\right\}$
(B) desc. via initial ideals
(C) desc. via min attained at least twice in trop equation.
Motiv: If $\sum t_{i}=0$, then \min val t_{i} attained at least twice.

Tropical geometry

How to tropicalize affine variety $X /$
Sometimes forgotten: non-archimedean (K, val)? val : $K \rightarrow \mathbb{R} \cup \infty$ satisfies:
(V1) val $a=\infty$ iff $a=0$
(V2) $\operatorname{val}(a b)=\operatorname{val} a+\operatorname{val} b$
(V3) $\operatorname{val}(a+b) \geq \min (\operatorname{val}(a), \operatorname{val}(b))$
(A) $\operatorname{Trop}(X)=\left\{\operatorname{val}\left(y_{i}\right): y \in X\right\}$
(B) desc. via initial ideals
(C) desc. via min attained at least twice in trop equation.
Motiv: If $\sum t_{i}=0$, then min val t_{i} attained at least twice.

Tropical geometry

How to tropicalize affine variety $X /$ non-archimedean (K, val)? val : $K \rightarrow \mathbb{R} \cup \infty$ satisfies:
(V1) val $a=\infty$ iff $a=0$
(V2) $\operatorname{val}(a b)=\operatorname{val} a+\operatorname{val} b$
(V3) $\operatorname{val}(a+b) \geq \min (\operatorname{val}(a), \operatorname{val}(b))$
(A) $\operatorname{Trop}(X)=\left\{\operatorname{val}\left(y_{i}\right): y \in X\right\}$
(B) desc. via initial ideals
(C) desc. via min attained at least twice in trop equation.
Motiv: If $\sum t_{i}=0$, then min val t_{i} attained at least twice.

Sometimes forgotten:
semivaluation sv : $K \rightarrow \mathbb{R} \cup \infty$:

Tropical geometry

How to tropicalize affine variety $X /$ non-archimedean (K, val)? val : $K \rightarrow \mathbb{R} \cup \infty$ satisfies:
(V1) val $a=\infty$ iff $a=0$
(V2) $\operatorname{val}(a b)=\operatorname{val} a+\operatorname{val} b$
(V3) $\operatorname{val}(a+b) \geq \min (\operatorname{val}(a), \operatorname{val}(b))$
(A) $\operatorname{Trop}(X)=\left\{\operatorname{val}\left(y_{i}\right): y \in X\right\}$
(B) desc. via initial ideals
(C) desc. via min attained at least twice in trop equation.
Motiv: If $\sum t_{i}=0$, then min val t_{i} attained at least twice.

Sometimes forgotten: semivaluation sv : $K \rightarrow \mathbb{R} \cup \infty$:
(V'1) sv $0=\infty$
(D) f_{i} generators of coord. ring $K[X]$

Tropical geometry

How to tropicalize affine variety $X /$ non-archimedean (K, val)? val : $K \rightarrow \mathbb{R} \cup \infty$ satisfies:
(V1) val $a=\infty$ iff $a=0$
(V2) $\operatorname{val}(a b)=\operatorname{val} a+\operatorname{val} b$
(V3) $\operatorname{val}(a+b) \geq \min (\operatorname{val}(a), \operatorname{val}(b))$
(A) $\operatorname{Trop}(X)=\left\{\operatorname{val}\left(y_{i}\right): y \in X\right\}$
(B) desc. via initial ideals
(C) desc. via min attained at least twice in trop equation.
Motiv: If $\sum t_{i}=0$, then min val t_{i} attained at least twice.

Sometimes forgotten: semivaluation sv : $K \rightarrow \mathbb{R} \cup \infty$:
(V'1) $\operatorname{sv} 0=\infty$
(D) f_{i} generators of coord. ring $K[X]$ consider emedding $\bar{f}=\left(f_{i}\right)$:

Tropical geometry

How to tropicalize affine variety $X /$ non-archimedean (K, val)? val : $K \rightarrow \mathbb{R} \cup \infty$ satisfies:
(V1) val $a=\infty$ iff $a=0$
(V2) $\operatorname{val}(a b)=\operatorname{val} a+\operatorname{val} b$
(V3) $\operatorname{val}(a+b) \geq \min (\operatorname{val}(a), \operatorname{val}(b))$
(A) $\operatorname{Trop}(X)=\left\{\operatorname{val}\left(y_{i}\right): y \in X\right\}$
(B) desc. via initial ideals
(C) desc. via min attained at least twice in trop equation.
Motiv: If $\sum t_{i}=0$, then min val t_{i}
attained at least twice.

Sometimes forgotten:
semivaluation sv : $K \rightarrow \mathbb{R} \cup \infty$:
(V'1) $\operatorname{sv} 0=\infty$
(D) f_{i} generators of coord. ring $K[X]$ consider emedding $\bar{f}=\left(f_{i}\right)$:
$\operatorname{Trop}_{\bar{f}}(X)=\left\{v^{\prime}\left(f_{1}\right), \ldots, v^{\prime}\left(f_{n}\right):\right.$

Tropical geometry

How to tropicalize affine variety $X /$ non-archimedean (K, val)? val : $K \rightarrow \mathbb{R} \cup \infty$ satisfies:
(V1) val $a=\infty$ iff $a=0$
(V2) $\operatorname{val}(a b)=\operatorname{val} a+\operatorname{val} b$
(V3) $\operatorname{val}(a+b) \geq \min (\operatorname{val}(a), \operatorname{val}(b))$
(A) $\operatorname{Trop}(X)=\left\{\operatorname{val}\left(y_{i}\right): y \in X\right\}$
(B) desc. via initial ideals
(C) desc. via min attained at least twice in trop equation.
Motiv: If $\sum t_{i}=0$, then min val t_{i} attained at least twice.

Sometimes forgotten:
semivaluation sv : $K \rightarrow \mathbb{R} \cup \infty$:
(V'1) $\operatorname{sv} 0=\infty$
(D) f_{i} generators of coord. ring $K[X]$ consider emedding $\bar{f}=\left(f_{i}\right)$:
$\operatorname{Trop}_{\bar{f}}(X)=\left\{v^{\prime}\left(f_{1}\right), \ldots, v^{\prime}\left(f_{n}\right):\right.$
$v^{\prime}: K[X] \rightarrow \overline{\mathbb{R}}$ extends $\left.v\right\}$

Tropical geometry

How to tropicalize affine variety $X /$ non-archimedean (K, val)? val : $K \rightarrow \mathbb{R} \cup \infty$ satisfies:
(V1) val $a=\infty$ iff $a=0$
(V2) $\operatorname{val}(a b)=\operatorname{val} a+\operatorname{val} b$
(V3) $\operatorname{val}(a+b) \geq \min (\operatorname{val}(a), \operatorname{val}(b))$
(A) $\operatorname{Trop}(X)=\left\{\operatorname{val}\left(y_{i}\right): y \in X\right\}$
(B) desc. via initial ideals
(C) desc. via min attained at least twice in trop equation.
Motiv: If $\sum t_{i}=0$, then min val t_{i}
attained at least twice.

Sometimes forgotten:
semivaluation sv : $K \rightarrow \mathbb{R} \cup \infty$:
(V'1) sv $0=\infty$
(D) f_{i} generators of coord. ring $K[X]$ consider emedding $\bar{f}=\left(f_{i}\right)$:
$\operatorname{Trop}_{\bar{f}}(X)=\left\{v^{\prime}\left(f_{1}\right), \ldots, v^{\prime}\left(f_{n}\right):\right.$
$v^{\prime}: K[X] \rightarrow \overline{\mathbb{R}}$ extends $\left.v\right\}$
Surprise surprise:

Tropical geometry

How to tropicalize affine variety X / non-archimedean (K, val)? val : $K \rightarrow \mathbb{R} \cup \infty$ satisfies:
(V1) val $a=\infty$ iff $a=0$
(V2) $\operatorname{val}(a b)=\operatorname{val} a+\operatorname{val} b$
(V3) $\operatorname{val}(a+b) \geq \min (\operatorname{val}(a), \operatorname{val}(b))$
(A) $\operatorname{Trop}(X)=\left\{\operatorname{val}\left(y_{i}\right): y \in X\right\}$
(B) desc. via initial ideals
(C) desc. via min attained at least twice in trop equation.
Motiv: If $\sum t_{i}=0$, then \min val t_{i} attained at least twice.

Sometimes forgotten:
semivaluation sv : $K \rightarrow \mathbb{R} \cup \infty$:
(V'1) sv $0=\infty$
(D) f_{i} generators of coord. ring $K[X]$ consider emedding $\bar{f}=\left(f_{i}\right)$:
$\operatorname{Trop}_{\bar{f}}(X)=\left\{v^{\prime}\left(f_{1}\right), \ldots, v^{\prime}\left(f_{n}\right):\right.$
$v^{\prime}: K[X] \rightarrow \overline{\mathbb{R}}$ extends $\left.v\right\}$
Surprise surprise:
Under appropiate conditions, all are the same [MS15; Dra08].

Tropical geometry

How to tropicalize affine variety X / non-archimedean (K, val)? val : $K \rightarrow \mathbb{R} \cup \infty$ satisfies:
(V1) val $a=\infty$ iff $a=0$
(V2) $\operatorname{val}(a b)=\operatorname{val} a+\operatorname{val} b$
(V3) $\operatorname{val}(a+b) \geq \min (\operatorname{val}(a), \operatorname{val}(b))$
(A) $\operatorname{Trop}(X)=\left\{\operatorname{val}\left(y_{i}\right): y \in X\right\}$
(B) desc. via initial ideals
(C) desc. via min attained at least twice in trop equation.
Motiv: If $\sum t_{i}=0$, then \min val t_{i} attained at least twice.

Sometimes forgotten:
semivaluation sv : $K \rightarrow \mathbb{R} \cup \infty$:
(V'1) sv $0=\infty$
(D) f_{i} generators of coord. ring $K[X]$ consider emedding $\bar{f}=\left(f_{i}\right)$:
$\operatorname{Trop}_{\bar{f}}(X)=\left\{v^{\prime}\left(f_{1}\right), \ldots, v^{\prime}\left(f_{n}\right):\right.$
$v^{\prime}: K[X] \rightarrow \overline{\mathbb{R}}$ extends $\left.v\right\}$
Surprise surprise:
Under appropiate conditions, all are the same [MS15; Dra08].

Crucial: Description (D) suggests Trop is a projection of a space of semivaluations, a gigantic object.

Berkovich analytification

Berkovich analytification

(D) $\bar{f}=\left(f_{i}\right)$ s.t. $K[X]=\left\langle f_{i}\right\rangle$:
$\operatorname{Trop}_{\bar{f}}(X)=\left\{v^{\prime}\left(f_{1}\right), \ldots, v^{\prime}\left(f_{n}\right):\right.$
$v^{\prime}: K[X] \rightarrow \overline{\mathbb{R}}$ extends $\left.v\right\}$
So Trop is projection of big space of v^{\prime}.

Berkovich analytification

(D) $\bar{f}=\left(f_{i}\right)$ s.t. $K[X]=\left\langle f_{i}\right\rangle$:
$\operatorname{Trop}_{\bar{f}}(X)=\left\{v^{\prime}\left(f_{1}\right), \ldots, v^{\prime}\left(f_{n}\right):\right.$
$v^{\prime}: K[X] \rightarrow \overline{\mathbb{R}}$ extends $\left.v\right\}$
So Trop is projection of big space of v^{\prime}. Can we reassemble it?

Berkovich analytification

(D) $\bar{f}=\left(f_{i}\right)$ s.t. $K[X]=\left\langle f_{i}\right\rangle$:
$\operatorname{Trop}_{\bar{f}}(X)=\left\{v^{\prime}\left(f_{1}\right), \ldots, v^{\prime}\left(f_{n}\right):\right.$
$v^{\prime}: K[X] \rightarrow \overline{\mathbb{R}}$ extends $\left.v\right\}$
So Trop is projection of big space of v^{\prime}. Can we reassemble it?
(semi)val gives (semi)norm:

Berkovich analytification

(D) $\bar{f}=\left(f_{i}\right)$ s.t. $K[X]=\left\langle f_{i}\right\rangle$:
$\operatorname{Trop}_{\bar{f}}(X)=\left\{v^{\prime}\left(f_{1}\right), \ldots, v^{\prime}\left(f_{n}\right):\right.$
$v^{\prime}: K[X] \rightarrow \overline{\mathbb{R}}$ extends $\left.v\right\}$
So Trop is projection of big space of v^{\prime}. Can we reassemble it?
(semi)val gives (semi)norm:
$|a|=\exp (-\mathrm{val} a)$.

Berkovich analytification

(D) $\bar{f}=\left(f_{i}\right)$ s.t. $K[X]=\left\langle f_{i}\right\rangle$:
$\operatorname{Trop}_{\bar{f}}(X)=\left\{v^{\prime}\left(f_{1}\right), \ldots, v^{\prime}\left(f_{n}\right):\right.$
$v^{\prime}: K[X] \rightarrow \overline{\mathbb{R}}$ extends $\left.v\right\}$
So Trop is projection of big space of v^{\prime}. Can we reassemble it?
(semi)val gives (semi)norm:
$|a|=\exp (-\mathrm{val} a)$.
Berkovich analytification $X^{\text {an }}=$

Berkovich analytification

(D) $\bar{f}=\left(f_{i}\right)$ s.t. $K[X]=\left\langle f_{i}\right\rangle$:
$\operatorname{Trop}_{\bar{f}}(X)=\left\{v^{\prime}\left(f_{1}\right), \ldots, v^{\prime}\left(f_{n}\right):\right.$
$v^{\prime}: K[X] \rightarrow \overline{\mathbb{R}}$ extends $\left.v\right\}$
So Trop is projection of big space of v^{\prime}. Can we reassemble it?
(semi)val gives (semi)norm:
$|a|=\exp (-\mathrm{val} a)$.
Berkovich analytification $X^{\text {an }}=$ \{multipli. seminorms $|\cdot|_{x}$ on $\left.K[X]\right\}$

Berkovich analytification

(D) $\bar{f}=\left(f_{i}\right)$ s.t. $K[X]=\left\langle f_{i}\right\rangle$:
$\operatorname{Trop}_{\bar{f}}(X)=\left\{v^{\prime}\left(f_{1}\right), \ldots, v^{\prime}\left(f_{n}\right):\right.$
$v^{\prime}: K[X] \rightarrow \overline{\mathbb{R}}$ extends $\left.v\right\}$
So Trop is projection of big space of v^{\prime}. Can we reassemble it?
(semi)val gives (semi)norm:
$|a|=\exp (-\mathrm{val} a)$.
Berkovich analytification $X^{\text {an }}=$ $\left\{\right.$ multipli. seminorms $|\cdot|_{x}$ on $\left.K[X]\right\}$
By [Pay08] we have:

Berkovich analytification

(D) $\bar{f}=\left(f_{i}\right)$ s.t. $K[X]=\left\langle f_{i}\right\rangle$:
$\operatorname{Trop}_{\bar{f}}(X)=\left\{v^{\prime}\left(f_{1}\right), \ldots, v^{\prime}\left(f_{n}\right):\right.$
$v^{\prime}: K[X] \rightarrow \overline{\mathbb{R}}$ extends $\left.v\right\}$
So Trop is projection of big space of v^{\prime}. Can we reassemble it?
(semi)val gives (semi)norm:
$|a|=\exp (-\mathrm{val} a)$.
Berkovich analytification $X^{\text {an }}=$ $\left\{\right.$ multipli. seminorms $|\cdot|_{x}$ on $\left.K[X]\right\}$
By [Pay08] we have:
"analytification is the limit of all tropicalizations"

Berkovich analytification

(D) $\bar{f}=\left(f_{i}\right)$ s.t. $K[X]=\left\langle f_{i}\right\rangle$:
$\operatorname{Trop}_{\bar{f}}(X)=\left\{v^{\prime}\left(f_{1}\right), \ldots, v^{\prime}\left(f_{n}\right):\right.$
$v^{\prime}: K[X] \rightarrow \overline{\mathbb{R}}$ extends $\left.v\right\}$
So Trop is projection of big space of v^{\prime}. Can we reassemble it?
(semi)val gives (semi)norm:
$|a|=\exp (-\mathrm{val} a)$.
Berkovich analytification $X^{\text {an }}=$ $\left\{\right.$ multipli. seminorms $|\cdot|_{x}$ on $\left.K[X]\right\}$
By [Pay08] we have:
"analytification is the limit of all
tropicalizations"
(come to Stefano's talk for details)

Berkovich analytification

(D) $\bar{f}=\left(f_{i}\right)$ s.t. $K[X]=\left\langle f_{i}\right\rangle$:
$\operatorname{Trop}_{\bar{f}}(X)=\left\{v^{\prime}\left(f_{1}\right), \ldots, v^{\prime}\left(f_{n}\right):\right.$
$v^{\prime}: K[X] \rightarrow \overline{\mathbb{R}}$ extends $\left.v\right\}$
So Trop is projection of big space of v^{\prime}. Can we reassemble it?
(semi) val gives (semi)norm:
$|a|=\exp (-\mathrm{val} a)$.
Berkovich analytification $X^{\text {an }}=$ $\left\{\right.$ multipli. seminorms $|\cdot|_{x}$ on $\left.K[X]\right\}$

Berkovich projective line, by Baker and Silverman: By [Pay08] we have:
"analytification is the limit of all tropicalizations" (come to Stefano's talk for details)

Berkovich analytification

(D) $\bar{f}=\left(f_{i}\right)$ s.t. $K[X]=\left\langle f_{i}\right\rangle$:
$\operatorname{Trop}_{\bar{f}}(X)=\left\{v^{\prime}\left(f_{1}\right), \ldots, v^{\prime}\left(f_{n}\right):\right.$
$v^{\prime}: K[X] \rightarrow \overline{\mathbb{R}}$ extends $\left.v\right\}$
So Trop is projection of big space of v^{\prime}. Can we reassemble it?
(semi)val gives (semi)norm:
$|a|=\exp (-\mathrm{val} a)$.
Berkovich analytification $X^{\text {an }}=$ \{multipli. seminorms $|\cdot|_{x}$ on $\left.K[X]\right\}$

Berkovich projective line, by Baker and Silverman: Several types of points: By [Pay08] we have:
"analytification is the limit of all tropicalizations" (come to Stefano's talk for details)

Berkovich analytification

(D) $\bar{f}=\left(f_{i}\right)$ s.t. $K[X]=\left\langle f_{i}\right\rangle$:
$\operatorname{Trop}_{\bar{f}}(X)=\left\{v^{\prime}\left(f_{1}\right), \ldots, v^{\prime}\left(f_{n}\right):\right.$
$v^{\prime}: K[X] \rightarrow \overline{\mathbb{R}}$ extends $\left.v\right\}$
So Trop is projection of big space of v^{\prime}. Can we reassemble it?
(semi)val gives (semi)norm:
$|a|=\exp (-\mathrm{val} a)$.
Berkovich analytification $X^{\text {an }}=$ \{multipli. seminorms $|\cdot|_{x}$ on $\left.K[X]\right\}$
By [Pay08] we have:
"analytification is the limit of all tropicalizations" (come to Stefano's talk for details)

Berkovich projective line, by Baker and Silverman: Several types of points:
Type I: X embeds into them

Berkovich analytification

(D) $\bar{f}=\left(f_{i}\right)$ s.t. $K[X]=\left\langle f_{i}\right\rangle$:
$\operatorname{Trop}_{\bar{f}}(X)=\left\{v^{\prime}\left(f_{1}\right), \ldots, v^{\prime}\left(f_{n}\right):\right.$
$v^{\prime}: K[X] \rightarrow \overline{\mathbb{R}}$ extends $\left.v\right\}$
So Trop is projection of big space of v^{\prime}. Can we reassemble it?
(semi)val gives (semi)norm:
$|a|=\exp (-\mathrm{val} a)$.
Berkovich analytification $X^{\text {an }}=$ \{multipli. seminorms $|\cdot|_{x}$ on $\left.K[X]\right\}$
By [Pay08] we have:
"analytification is the limit of all tropicalizations" (come to Stefano's talk for details)

Berkovich projective line, by Baker and Silverman:
Several types of points:
Type I: X embeds into them
Type II: Branching (directions described by $\left.\mathbb{P}(k)), k=\operatorname{val}^{-1}(\geq 0) / \mathrm{val}^{-1}(\geq 1)\right)$

Berkovich analytification

(D) $\bar{f}=\left(f_{i}\right)$ s.t. $K[X]=\left\langle f_{i}\right\rangle$:
$\operatorname{Trop}_{\bar{f}}(X)=\left\{v^{\prime}\left(f_{1}\right), \ldots, v^{\prime}\left(f_{n}\right):\right.$
$v^{\prime}: K[X] \rightarrow \overline{\mathbb{R}}$ extends $\left.v\right\}$
So Trop is projection of big space of v^{\prime}. Can we reassemble it?
(semi)val gives (semi)norm:
$|a|=\exp (-\mathrm{val} a)$.
Berkovich analytification $X^{\text {an }}=$ \{multipli. seminorms $|\cdot|_{x}$ on $\left.K[X]\right\}$
By [Pay08] we have:
"analytification is the limit of all tropicalizations" (come to Stefano's talk for details)

Berkovich projective line, by Baker and Silverman:
Several types of points:
Type I: X embeds into them
Type II: Branching (directions described by $\left.\mathbb{P}(k)), k=\operatorname{val}^{-1}(\geq 0) / \operatorname{val}^{-1}(\geq 1)\right)$
Type III: discs with radius not in im val

Berkovich analytification

(D) $\bar{f}=\left(f_{i}\right)$ s.t. $K[X]=\left\langle f_{i}\right\rangle$:
$\operatorname{Trop}_{\bar{f}}(X)=\left\{v^{\prime}\left(f_{1}\right), \ldots, v^{\prime}\left(f_{n}\right):\right.$
$v^{\prime}: K[X] \rightarrow \overline{\mathbb{R}}$ extends $\left.v\right\}$
So Trop is projection of big space of v^{\prime}. Can we reassemble it?
(semi)val gives (semi)norm:
$|a|=\exp (-\mathrm{val} a)$.
Berkovich analytification $X^{\text {an }}=$ \{multipli. seminorms $|\cdot|_{x}$ on $\left.K[X]\right\}$
By [Pay08] we have:
"analytification is the limit of all tropicalizations"
(come to Stefano's talk for details)

Berkovich projective line, by Baker and Silverman:
Several types of points:
Type I: X embeds into them
Type II: Branching (directions described by $\left.\mathbb{P}(k)), k=\operatorname{val}^{-1}(\geq 0) / \operatorname{val}^{-1}(\geq 1)\right)$
Type III: discs with radius not in im val
Type IV: absent if K spherically
complete (no cauterizations)

Buildings

"analytification is the limit of all tropicalizations"

Buildings

"analytification is the limit of all tropicalizations"
$X^{\mathrm{an}} \sim \lim \operatorname{Trop}(X, \iota)$

Buildings

> "analytification is the limit of all tropicalizations"
> $X^{\text {an }} \sim \lim \operatorname{Trop}(X, \iota)$
> $\pi_{\iota}(x)=\left(-\log \left|f_{1}\right|_{x}, \ldots,-\log \left|f_{n}\right|_{x}\right)$

Buildings

"analytification is the limit of all tropicalizations"
$X^{\text {an }} \sim \lim \operatorname{Trop}(X, \iota)$
$\pi_{\iota}(x)=\left(-\log \left|f_{1}\right|_{x}, \ldots,-\log \left|f_{n}\right|_{x}\right)$
Now assume ι is linear, i.e. $\operatorname{deg} f_{i}=1$

Buildings

"analytification is the limit of all tropicalizations"
$X^{\text {an }} \sim \lim \operatorname{Trop}(X, \iota)$
$\pi_{\iota}(x)=\left(-\log \left|f_{1}\right|_{x}, \ldots,-\log \left|f_{n}\right|_{x}\right)$
Now assume ι is linear, i.e.
$\operatorname{deg} f_{i}=1$
$\lim _{\iota} \pi_{\iota}$ factors thru. a retraction:

Buildings

"analytification is the limit of all tropicalizations"
$X^{\text {an }} \sim \lim \operatorname{Trop}(X, \iota)$
$\pi_{\iota}(x)=\left(-\log \left|f_{1}\right|_{x}, \ldots,-\log \left|f_{n}\right|_{x}\right)$
Now assume ι is linear, i.e.
$\operatorname{deg} f_{i}=1$
$\lim \pi_{\iota}$ factors thru. a retraction:
$X^{\text {an }} \xrightarrow{\tau} \overline{\mathcal{N}}(X) \xrightarrow{\text { Trop }} \underset{\rightleftarrows}{\rightleftarrows} \operatorname{Trop}(X, \iota)$

Buildings

"analytification is the limit of all tropicalizations"
$X^{\text {an }} \sim \lim \operatorname{Trop}(X, \iota)$
$\pi_{\iota}(x)=\left(-\log \left|f_{1}\right|_{x}, \ldots,-\log \left|f_{n}\right|_{x}\right)$
Now assume ι is linear, i.e.
$\operatorname{deg} f_{i}=1$
$\lim \pi_{\iota}$ factors thru. a retraction:
$X^{\text {an }} \xrightarrow{\tau} \overline{\mathcal{N}}(X) \xrightarrow{\text { Trop }} \underset{\leftarrow}{\lim } \operatorname{Trop}(X, \iota)$
τ restricts $|\cdot|_{x}$ on $K[X]$ to
$\|\cdot\|_{x}$ on lin. forms of $K[X]$

Buildings

-Particular case: $\overline{\mathcal{N}}_{r}(K)$ is the
Goldman-Iwahori space of seminorms on ($\left.K^{r}\right)^{*}$
"analytification is the limit of all tropicalizations"
$X^{\mathrm{an}} \sim \lim \operatorname{Trop}(X, \iota)$
$\pi_{\iota}(x)=\left(-\log \left|f_{1}\right|_{x}, \ldots,-\log \left|f_{n}\right|_{x}\right)$
Now assume ι is linear, i.e.
$\operatorname{deg} f_{i}=1$
$\lim _{\iota} \pi_{\iota}$ factors thru. a retraction:
$X^{\text {an }} \xrightarrow{\tau} \overline{\mathcal{N}}(X) \xrightarrow{\text { Trop }} \underset{\leftarrow}{\lim } \operatorname{Trop}(X, \iota)$
τ restricts $|\cdot|_{x}$ on $K[X]$ to
$\|\cdot\|_{x}$ on lin. forms of $K[X]$

Buildings

-Particular case: $\overline{\mathcal{N}}_{r}(K)$ is the
Goldman-Iwahori space of seminorms on ($\left.K^{r}\right)^{*}$
-Set $\overline{\mathcal{X}}_{r}(K)=\overline{\mathcal{N}}_{r}(K) / \sim$
"analytification is the limit of all tropicalizations"
$X^{\text {an }} \sim \lim \operatorname{Trop}(X, \iota)$
$\pi_{\iota}(x)=\left(-\log \left|f_{1}\right|_{x}, \ldots,-\log \left|f_{n}\right|_{x}\right)$
Now assume ι is linear, i.e.
$\operatorname{deg} f_{i}=1$
$\lim _{\iota} \pi_{\iota}$ factors thru. a retraction:
$X^{\text {an }} \xrightarrow{\tau} \overline{\mathcal{N}}(X) \xrightarrow{\text { Trop }} \underset{\leftarrow}{\lim } \operatorname{Trop}(X, \iota)$
τ restricts $|\cdot|_{X}$ on $K[X]$ to
$\|\cdot\|_{x}$ on lin. forms of $K[X]$

Buildings

-Particular case: $\overline{\mathcal{N}}_{r}(K)$ is the
Goldman-Iwahori space of seminorms on ($\left.K^{r}\right)^{*}$
-Set $\overline{\mathcal{X}}_{r}(K)=\overline{\mathcal{N}}_{r}(K) / \sim$ where $\|\cdot\| \sim\|\cdot\|^{\prime}$ if $\|\cdot\|=\lambda\|\cdot\|^{\prime}$

Now assume ι is linear, i.e. $\operatorname{deg} f_{i}=1$
$\lim _{\iota} \pi_{\iota}$ factors thru. a retraction:
$\overleftarrow{X^{\text {an }}} \xrightarrow{\tau} \overline{\mathcal{N}}(X) \xrightarrow{\text { Trop }} \underset{\leftarrow}{\lim } \operatorname{Trop}(X, \iota)$
τ restricts $|\cdot|_{X}$ on $K[X]$ to
$\|\cdot\|_{X}$ on lin. forms of $K[X]$
τ restricts $|\cdot|_{X}$ on $K[X]$ to
$\|\cdot\|_{X}$ on lin. forms of $K[X]$
"analytification is the limit of all tropicalizations"
$X^{\mathrm{an}} \sim \lim \operatorname{Trop}(X, \iota)$
$\pi_{\iota}(x)=\left(-\log \left|f_{1}\right|_{x}, \ldots,-\log \left|f_{n}\right|_{x}\right)$

Buildings

-Particular case: $\overline{\mathcal{N}}_{r}(K)$ is the
Goldman-Iwahori space of seminorms on ($\left.K^{r}\right)^{*}$
-Set $\overline{\mathcal{X}}_{r}(K)=\overline{\mathcal{N}}_{r}(K) / \sim$ where $\|\cdot\| \sim\|\cdot\|^{\prime}$ if $\|\cdot\|=\lambda\|\cdot\|^{\prime}$

Buildings are highly symmetrical spaces with an action of a group.
"analytification is the limit of all tropicalizations"
$X^{\mathrm{an}} \sim \lim \operatorname{Trop}(X, \iota)$
$\pi_{\iota}(x)=\left(-\log \left|f_{1}\right|_{x}, \ldots,-\log \left|f_{n}\right|_{x}\right)$
Now assume ι is linear, i.e. $\operatorname{deg} f_{i}=1$
$\lim _{\iota} \pi_{\iota}$ factors thru. a retraction:
$X^{\text {an }} \xrightarrow{\tau} \overline{\mathcal{N}}(X) \xrightarrow{\text { Trop }} \underset{\leftarrow}{\lim } \operatorname{Trop}(X, \iota)$
τ restricts $|\cdot|_{x}$ on $K[X]$ to
$\|\cdot\|_{x}$ on lin. forms of $K[X]$

Buildings

-Particular case: $\overline{\mathcal{N}}_{r}(K)$ is the
Goldman-Iwahori space of
"analytification is the limit of all tropicalizations"
$X^{\mathrm{an}} \sim \lim \operatorname{Trop}(X, \iota)$
$\pi_{\iota}(x)=\left(-\log \left|f_{1}\right|_{x}, \ldots,-\log \left|f_{n}\right|_{x}\right)$
Now assume ι is linear, i.e. $\operatorname{deg} f_{i}=1$
$\lim \pi_{\iota}$ factors thru. a retraction:
$X^{\text {an }} \xrightarrow{\tau} \overline{\mathcal{N}}(X) \xrightarrow{\text { Trop }} \underset{\leftarrow}{\lim } \operatorname{Trop}(X, \iota)$
τ restricts $\mid \cdot \|_{x}$ on $K[X]$ to
$\|\cdot\|_{x}$ on lin. forms of $K[X]$
seminorms on ($\left.K^{r}\right)^{*}$
-Set $\overline{\mathcal{X}}_{r}(K)=\overline{\mathcal{N}}_{r}(K) / \sim$ where $\|\cdot\| \sim\|\cdot\|^{\prime}$ if $\|\cdot\|=\lambda\|\cdot\|^{\prime}$

Buildings are highly symmetrical spaces with an action of a group. They have a polyhedral structure of appartments.

Buildings

-Particular case: $\overline{\mathcal{N}}_{r}(K)$ is the Goldman-Iwahori space of
"analytification is the limit of all tropicalizations"
$X^{\text {an }} \sim \lim \operatorname{Trop}(X, \iota)$
$\pi_{\iota}(x)=\left(-\log \left|f_{1}\right|_{x}, \ldots,-\log \left|f_{n}\right|_{x}\right)$
Now assume ι is linear, i.e. $\operatorname{deg} f_{i}=1$
$\lim \pi_{\iota}$ factors thru. a retraction:
$X^{\text {an }} \xrightarrow{\tau} \overline{\mathcal{N}}(X) \xrightarrow{\text { Trop }} \underset{\leftarrow}{\lim } \operatorname{Trop}(X, \iota)$
τ restricts $|\cdot|_{x}$ on $K[X]$ to $\|\cdot\|_{x}$ on lin. forms of $K[X]$
seminorms on ($\left.K^{r}\right)^{*}$
-Set $\overline{\mathcal{X}}_{r}(K)=\overline{\mathcal{N}}_{r}(K) / \sim$ where $\|\cdot\| \sim\|\cdot\|^{\prime}$ if $\|\cdot\|=\lambda\|\cdot\|^{\prime}$

Buildings are highly symmetrical spaces with an action of a group. They have a polyhedral structure of appartments.
Q1: How does $P G L_{r+1}(K)$ act on $\overline{\mathcal{X}}_{r}(K)$?

Buildings

-Particular case: $\overline{\mathcal{N}}_{r}(K)$ is the
Goldman-Iwahori space of
"analytification is the limit of all tropicalizations"
$X^{\mathrm{an}} \sim \lim \operatorname{Trop}(X, \iota)$
$\pi_{\iota}(x)=\left(-\log \left|f_{1}\right|_{x}, \ldots,-\log \left|f_{n}\right|_{x}\right)$
Now assume ι is linear, i.e. $\operatorname{deg} f_{i}=1$
$\lim \pi_{\iota}$ factors thru. a retraction:
$X^{\text {an }} \xrightarrow{\tau} \overline{\mathcal{N}}(X) \xrightarrow{\text { Trop }} \underset{\leftarrow}{\lim } \operatorname{Trop}(X, \iota)$
τ restricts $|\cdot|_{x}$ on $K[X]$ to
$\|\cdot\|_{x}$ on lin. forms of $K[X]$
seminorms on ($\left.K^{r}\right)^{*}$
-Set $\overline{\mathcal{X}}_{r}(K)=\overline{\mathcal{N}}_{r}(K) / \sim$ where $\|\cdot\| \sim\|\cdot\|^{\prime}$ if $\|\cdot\|=\lambda\|\cdot\|^{\prime}$

Buildings are highly symmetrical spaces with an action of a group. They have a polyhedral structure of appartments.
Q1: How does $P G L_{r+1}(K)$ act on $\overline{\mathcal{X}}_{r}(K)$?
Q2: Is $\overline{\mathcal{X}}_{r}(K)$ the building of $P G L_{r+1}(K)$?

Buildings

-Particular case: $\overline{\mathcal{N}}_{r}(K)$ is the
Goldman-Iwahori space of
"analytification is the limit of all tropicalizations"
$X^{\text {an }} \sim \lim \operatorname{Trop}(X, \iota)$
$\pi_{\iota}(x)=\left(-\log \left|f_{1}\right|_{x}, \ldots,-\log \left|f_{n}\right|_{x}\right)$
Now assume ι is linear, i.e. $\operatorname{deg} f_{i}=1$
$\lim \pi_{\iota}$ factors thru. a retraction:
$X^{\text {an }} \xrightarrow{\tau} \overline{\mathcal{N}}(X) \xrightarrow{\text { Trop }} \underset{\leftarrow}{\lim } \operatorname{Trop}(X, \iota)$
τ restricts $|\cdot|_{x}$ on $K[X]$ to
$\|\cdot\|_{x}$ on lin. forms of $K[X]$
seminorms on ($\left.K^{r}\right)^{*}$
-Set $\overline{\mathcal{X}}_{r}(K)=\overline{\mathcal{N}}_{r}(K) / \sim$ where $\|\cdot\| \sim\|\cdot\|^{\prime}$ if $\|\cdot\|=\lambda\|\cdot\|^{\prime}$

Buildings are highly symmetrical spaces with an action of a group. They have a polyhedral structure of appartments.
Q1: How does $P G L_{r+1}(K)$ act on $\overline{\mathcal{X}}_{r}(K)$?
Q2: Is $\overline{\mathcal{X}}_{r}(K)$ the building of $P G L_{r+1}(K)$?
Q3: Can we recover $\overline{\mathcal{X}}_{r}(K)$ tropically?

Appartments

$\overline{\mathcal{X}}_{r}(K)$ is the homothety classes of seminorms on $\left(K^{*}\right)^{r+1}$

Appartments

$\overline{\mathcal{X}}_{r}(K)$ is the homothety classes of seminorms on $\left(K^{*}\right)^{r+1}$
Diagonalizable seminorms
$\overline{\mathcal{B}}_{n}(K) \subset \overline{\mathcal{X}}_{n}(K):$

Appartments

$\overline{\mathcal{X}}_{r}(K)$ is the homothety classes of seminorms on $\left(K^{*}\right)^{r+1}$
Diagonalizable seminorms
$\overline{\mathcal{B}}_{n}(K) \subset \overline{\mathcal{X}}_{n}(K):$
vec. space V of dim-n

Appartments

$\overline{\mathcal{X}}_{r}(K)$ is the homothety classes of seminorms on $\left(K^{*}\right)^{r+1}$
Diagonalizable seminorms
$\overline{\mathcal{B}}_{n}(K) \subset \overline{\mathcal{X}}_{n}(K):$
vec. space V of dim-n
choose basis B and $u \in(\mathbb{R} \cup \infty)^{n}$

Appartments

$\overline{\mathcal{X}}_{r}(K)$ is the homothety classes of seminorms on $\left(K^{*}\right)^{r+1}$
Diagonalizable seminorms
$\overline{\mathcal{B}}_{n}(K) \subset \overline{\mathcal{X}}_{n}(K):$
vec. space V of dim-n
choose basis B and $u \in(\mathbb{R} \cup \infty)^{n}$ for vector $v=\sum_{i \in B} \lambda_{i} e_{i} \in V$

Appartments

$\overline{\mathcal{X}}_{r}(K)$ is the homothety classes of seminorms on $\left(K^{*}\right)^{r+1}$
Diagonalizable seminorms
$\overline{\mathcal{B}}_{n}(K) \subset \overline{\mathcal{X}}_{n}(K):$
vec. space V of dim-n
choose basis B and $u \in(\mathbb{R} \cup \infty)^{n}$
for vector $v=\sum_{i \in B} \lambda_{i} e_{i} \in V$
$\|v\|_{B, u}=\max _{i \in B}\left|\lambda_{i}\right|_{K} \exp \left(-u_{i}\right)$

Appartments

$\overline{\mathcal{X}}_{r}(K)$ is the homothety classes of seminorms on $\left(K^{*}\right)^{r+1}$
Diagonalizable seminorms
$\overline{\mathcal{B}}_{n}(K) \subset \overline{\mathcal{X}}_{n}(K):$
vec. space V of dim-n
choose basis B and $u \in(\mathbb{R} \cup \infty)^{n}$
for vector $v=\sum_{i \in B} \lambda_{i} e_{i} \in V$
$\|v\|_{B, u}=\max _{i \in B}\left|\lambda_{i}\right|_{K} \exp \left(-u_{i}\right)$
By work of [Wer04], when val non-trivial, $\mathcal{B}_{r}(K)$ is the compactification of the affine building for $P G L_{r+1}(K)$

Appartments

$\overline{\mathcal{X}}_{r}(K)$ is the homothety classes of seminorms on $\left(K^{*}\right)^{r+1}$
Diagonalizable seminorms
$\overline{\mathcal{B}}_{n}(K) \subset \overline{\mathcal{X}}_{n}(K):$
vec. space V of dim-n
choose basis B and $u \in(\mathbb{R} \cup \infty)^{n}$
for vector $v=\sum_{i \in B} \lambda_{i} e_{i} \in V$
$\|v\|_{B, u}=\max _{i \in B}\left|\lambda_{i}\right|_{K} \exp \left(-u_{i}\right)$
By work of [Wer04], when val non-trivial, $\overline{\mathcal{B}}_{r}(K)$ is the compactification of the affine building for $P G L_{r+1}(K)$
Appartments indexed by bases B.

Appartments

$\overline{\mathcal{X}}_{r}(K)$ is the homothety classes of seminorms on $\left(K^{*}\right)^{r+1}$
Diagonalizable seminorms
$\overline{\mathcal{B}}_{n}(K) \subset \overline{\mathcal{X}}_{n}(K):$
vec. space V of dim-n
choose basis B and $u \in(\mathbb{R} \cup \infty)^{n}$
for vector $v=\sum_{i \in B} \lambda_{i} e_{i} \in V$
$\|v\|_{B, u}=\max _{i \in B}\left|\lambda_{i}\right|_{K} \exp \left(-u_{i}\right)$
By work of [Wer04], when val non-trivial, $\overline{\mathcal{B}}_{r}(K)$ is the compactification of the affine building for $P G L_{r+1}(K)$
Appartments indexed by bases B. $\Phi_{B}:(\mathbb{R} \cup \infty)^{n} \rightarrow \overline{\mathcal{B}}_{r}(K)$

Appartments

$\overline{\mathcal{X}}_{r}(K)$ is the homothety classes of seminorms on $\left(K^{*}\right)^{r+1}$
Diagonalizable seminorms
$\overline{\mathcal{B}}_{n}(K) \subset \overline{\mathcal{X}}_{n}(K):$
vec. space V of dim-n
choose basis B and $u \in(\mathbb{R} \cup \infty)^{n}$
for vector $v=\sum_{i \in B} \lambda_{i} e_{i} \in V$
$\|v\|_{B, u}=\max _{i \in B}\left|\lambda_{i}\right|_{K} \exp \left(-u_{i}\right)$
By work of [Wer04], when val non-trivial, $\overline{\mathcal{B}}_{r}(K)$ is the
compactification of the affine building for $P G L_{r+1}(K)$

Appartments indexed by bases B.

$$
\begin{aligned}
& \Phi_{B}:(\mathbb{R} \cup \infty)^{n} \rightarrow \overline{\mathcal{B}}_{r}(K) \\
& u \mapsto\|\cdot\|_{B, u}
\end{aligned}
$$

Appartments

$\overline{\mathcal{X}}_{r}(K)$ is the homothety classes of seminorms on $\left(K^{*}\right)^{r+1}$
Diagonalizable seminorms
$\overline{\mathcal{B}}_{n}(K) \subset \overline{\mathcal{X}}_{n}(K):$
vec. space V of dim-n
choose basis B and $u \in(\mathbb{R} \cup \infty)^{n}$
for vector $v=\sum_{i \in B} \lambda_{i} e_{i} \in V$
$\|v\|_{B, u}=\max _{i \in B}\left|\lambda_{i}\right|_{K} \exp \left(-u_{i}\right)$
By work of [Wer04], when val non-trivial, $\overline{\mathcal{B}}_{r}(K)$ is the compactification of the affine building for $P G L_{r+1}(K)$

Appartments indexed by bases B.

$$
\begin{aligned}
& \Phi_{B}:(\mathbb{R} \cup \infty)^{n} \rightarrow \overline{\mathcal{B}}_{r}(K) \\
& u \mapsto\|\cdot\|_{B, u}
\end{aligned}
$$

Figure 2. The affine Bruhat-Tits building $\overline{\mathcal{B}}_{1}\left(\mathbb{Q}_{2}\right)$

Appartments

$\overline{\mathcal{X}}_{r}(K)$ is the homothety classes of seminorms on $\left(K^{*}\right)^{r+1}$
Diagonalizable seminorms
$\overline{\mathcal{B}}_{n}(K) \subset \overline{\mathcal{X}}_{n}(K):$
vec. space V of dim-n
choose basis B and $u \in(\mathbb{R} \cup \infty)^{n}$
for vector $v=\sum_{i \in B} \lambda_{i} e_{i} \in V$
$\|v\|_{B, u}=\max _{i \in B}\left|\lambda_{i}\right|_{K} \exp \left(-u_{i}\right)$
By work of [Wer04], when val non-trivial, $\overline{\mathcal{B}}_{r}(K)$ is the compactification of the affine building for $P G L_{r+1}(K)$

Appartments indexed by bases B. $\Phi_{B}:(\mathbb{R} \cup \infty)^{n} \rightarrow \overline{\mathcal{B}}_{r}(K)$ $u \mapsto\|\cdot\|_{B, u}$

Figure 2. The affine Bruhat-Tits building $\overline{\mathcal{B}}_{1}\left(\mathbb{Q}_{2}\right)$

If K spherically complete:
$\overline{\mathcal{B}}_{r}(K)=\overline{\mathcal{X}}_{r}(K)$

Valuated matroids

Q1: How does $P G L_{r+1}(K)$ act on $\overline{\mathcal{X}}_{r}(K) ?$

Valuated matroids

Q1: How does $P G L_{r+1}(K)$ act on $\overline{\mathcal{X}}_{r}(K)$? Nicely on $\overline{\mathcal{B}}_{r}(K)$

Valuated matroids

Q1: How does $P G L_{r+1}(K)$ act on
$\overline{\mathcal{X}}_{r}(K)$? Nicely on $\overline{\mathcal{B}}_{r}(K)$
Q2: Is $\overline{\mathcal{X}}_{r}(K)$ the building of
$P G L_{r+1}(K)$?

Valuated matroids

Q1: How does $P G L_{r+1}(K)$ act on
$\overline{\mathcal{X}}_{r}(K)$? Nicely on $\overline{\mathcal{B}}_{r}(K)$
Q2: Is $\overline{\mathcal{X}}_{r}(K)$ the building of
$P G L_{r+1}(K)$? yes

Valuated matroids

Q1: How does $P G L_{r+1}(K)$ act on
$\overline{\mathcal{X}}_{r}(K)$? Nicely on $\overline{\mathcal{B}}_{r}(K)$
Q2: Is $\overline{\mathcal{X}}_{r}(K)$ the building of
$P G L_{r+1}(K)$? yes
Q3: Can we recover $\overline{\mathcal{X}}_{r}(K)$ tropically?

Valuated matroids

Q1: How does $P G L_{r+1}(K)$ act on
$\overline{\mathcal{X}}_{r}(K)$? Nicely on $\overline{\mathcal{B}}_{r}(K)$
Q2: Is $\overline{\mathcal{X}}_{r}(K)$ the building of
$P G L_{r+1}(K)$? yes
Q3: Can we recover $\overline{\mathcal{X}}_{r}(K)$ tropically?

Thm A: The trop maps induce natural homeomorphism

Valuated matroids

Q1: How does $P G L_{r+1}(K)$ act on
$\overline{\mathcal{X}}_{r}(K)$? Nicely on $\overline{\mathcal{B}}_{r}(K)$
Q2: Is $\overline{\mathcal{X}}_{r}(K)$ the building of
$P G L_{r+1}(K)$? yes
Q3: Can we recover $\overline{\mathcal{X}}_{r}(K)$ tropically?

Thm A: The trop maps induce natural homeomorphism
$\overline{\mathcal{X}}_{r}(K) \sim \lim _{\leftrightarrows} \operatorname{Trop}\left(\mathbb{P}^{r}, \iota\right)$

Valuated matroids

Q1: How does $P G L_{r+1}(K)$ act on
$\overline{\mathcal{X}}_{r}(K)$? Nicely on $\overline{\mathcal{B}}_{r}(K)$
Q2: Is $\overline{\mathcal{X}}_{r}(K)$ the building of
$P G L_{r+1}(K)$? yes
Q3: Can we recover $\overline{\mathcal{X}}_{r}(K)$ tropically?

Thm A: The trop maps induce natural homeomorphism
$\overline{\mathcal{X}}_{r}(K) \sim \lim _{\leftrightarrows} \operatorname{Trop}\left(\mathbb{P}^{r}, \iota\right)$
$I=$ linear embeddings of \mathbb{P}^{r}

Valuated matroids

Q1: How does $P G L_{r+1}(K)$ act on
$\overline{\mathcal{X}}_{r}(K)$? Nicely on $\overline{\mathcal{B}}_{r}(K)$
Q2: Is $\overline{\mathcal{X}}_{r}(K)$ the building of
$P G L_{r+1}(K)$? yes
Q3: Can we recover $\overline{\mathcal{X}}_{r}(K)$ tropically?

Thm A: The trop maps induce natural homeomorphism
$\overline{\mathcal{X}}_{r}(K) \sim \lim _{\leftrightarrows} \operatorname{Trop}\left(\mathbb{P}^{r}, \iota\right)$
$I=$ linear embeddings of \mathbb{P}^{r}
Compare with Payne:

Valuated matroids

Q1: How does $P G L_{r+1}(K)$ act on
$\overline{\mathcal{X}}_{r}(K)$? Nicely on $\overline{\mathcal{B}}_{r}(K)$
Q2: Is $\overline{\mathcal{X}}_{r}(K)$ the building of
$P G L_{r+1}(K)$? yes
Q3: Can we recover $\overline{\mathcal{X}}_{r}(K)$ tropically?

Thm A: The trop maps induce natural homeomorphism
$\overline{\mathcal{X}}_{r}(K) \sim \lim _{\leftrightarrows} \operatorname{Trop}\left(\mathbb{P}^{r}, \iota\right)$
$I=$ linear embeddings of \mathbb{P}^{r}
Compare with Payne:
$X=\mathbb{P}^{r}$

Valuated matroids

Q1: How does $P G L_{r+1}(K)$ act on
$\overline{\mathcal{X}}_{r}(K)$? Nicely on $\overline{\mathcal{B}}_{r}(K)$
Q2: Is $\overline{\mathcal{X}}_{r}(K)$ the building of
$P G L_{r+1}(K)$? yes
Q3: Can we recover $\overline{\mathcal{X}}_{r}(K)$ tropically?

Thm A: The trop maps induce natural homeomorphism
$\overline{\mathcal{X}}_{r}(K) \sim \lim _{\leftrightarrows}$ Trop $\left(\mathbb{P}^{r}, \iota\right)$
$I=$ linear embeddings of \mathbb{P}^{r}
Compare with Payne:
$X=\mathbb{P}^{r}$
category I is smaller

Valuated matroids

Q1: How does $P G L_{r+1}(K)$ act on
$\overline{\mathcal{X}}_{r}(K)$? Nicely on $\overline{\mathcal{B}}_{r}(K)$
Q2: Is $\overline{\mathcal{X}}_{r}(K)$ the building of
$P G L_{r+1}(K)$? yes
Q3: Can we recover $\overline{\mathcal{X}}_{r}(K)$ tropically?

Thm A: The trop maps induce natural homeomorphism
$\overline{\mathcal{X}}_{r}(K) \sim \lim _{\leftrightarrows}$ Trop $\left(\mathbb{P}^{r}, \iota\right)$
$I=$ linear embeddings of \mathbb{P}^{r}
Compare with Payne:
$X=\mathbb{P}^{r}$
category I is smaller
What is $\operatorname{Trop}\left(P^{r}, \iota\right)$?

Valuated matroids

Q1: How does $P G L_{r+1}(K)$ act on
$\overline{\mathcal{X}}_{r}(K)$? Nicely on $\overline{\mathcal{B}}_{r}(K)$
Q2: Is $\overline{\mathcal{X}}_{r}(K)$ the building of
$P G L_{r+1}(K)$? yes
Q3: Can we recover $\overline{\mathcal{X}}_{r}(K)$ tropically?

Thm A: The trop maps induce natural homeomorphism
$\overline{\mathcal{X}}_{r}(K) \sim \lim _{,} \operatorname{Trop}\left(\mathbb{P}^{r}, \iota\right)$
$I=$ linear embeddings of \mathbb{P}^{r}
Compare with Payne:
$X=\mathbb{P}^{r}$
category I is smaller
What is $\operatorname{Trop}\left(P^{r}, \iota\right)$?
$\iota=\left(f_{i}\right)$ a linear embedding

Valuated matroids

Q1: How does $P G L_{r+1}(K)$ act on
$\overline{\mathcal{X}}_{r}(K)$? Nicely on $\overline{\mathcal{B}}_{r}(K)$
Q2: Is $\overline{\mathcal{X}}_{r}(K)$ the building of
$P G L_{r+1}(K)$? yes
Q3: Can we recover $\overline{\mathcal{X}}_{r}(K)$ tropically?

Thm A: The trop maps induce natural homeomorphism
$\overline{\mathcal{X}}_{r}(K) \sim \lim _{I} \operatorname{Trop}\left(\mathbb{P}^{r}, \iota\right)$
$I=$ linear embeddings of $\mathbb{P} r$
Compare with Payne:
$X=\mathbb{P}^{r}$
category I is smaller
What is $\operatorname{Trop}\left(P^{r}, \iota\right)$?
$\iota=\left(f_{i}\right)$ a linear embedding
associate valuated matroid (E, v) to f_{0}, \ldots, f_{n}

Valuated matroids

Q1: How does $P G L_{r+1}(K)$ act on
Denote by e_{B} the indicator vector $\overline{\mathcal{X}}_{r}(K)$? Nicely on $\overline{\mathcal{B}}_{r}(K)$
Q2: Is $\overline{\mathcal{X}}_{r}(K)$ the building of
$P G L_{r+1}(K)$? yes
Q3: Can we recover $\overline{\mathcal{X}}_{r}(K)$ tropically?
Thm A: The trop maps induce natural homeomorphism
$\overline{\mathcal{X}}_{r}(K) \sim \lim , \operatorname{Trop}\left(\mathbb{P}^{r}, \iota\right)$
$I=$ linear embeddings of \mathbb{P}^{r}
Compare with Payne:
$X=\mathbb{P}^{r}$
category I is smaller
What is $\operatorname{Trop}\left(P^{r}, \iota\right)$?
$\iota=\left(f_{i}\right)$ a linear embedding
associate valuated matroid (E, v) to f_{0}, \ldots, f_{n}

Valuated matroids

Q1: How does $P G L_{r+1}(K)$ act on
$\overline{\mathcal{X}}_{r}(K)$? Nicely on $\overline{\mathcal{B}}_{r}(K)$
Q2: Is $\overline{\mathcal{X}}_{r}(K)$ the building of
$P G L_{r+1}(K)$? yes
Q3: Can we recover $\overline{\mathcal{X}}_{r}(K)$

tropically?

Thm A: The trop maps induce natural homeomorphism
$\overline{\mathcal{X}}_{r}(K) \sim \lim _{,} \operatorname{Trop}\left(\mathbb{P}^{r}, \iota\right)$
$I=$ linear embeddings of \mathbb{P}^{r}
Compare with Payne:
$X=\mathbb{P}^{r}$
category I is smaller
What is $\operatorname{Trop}\left(P^{r}, \iota\right)$?
$\iota=\left(f_{i}\right)$ a linear embedding
associate valuated matroid (E, v) to f_{0}, \ldots, f_{n}

Denote by e_{B} the indicator vector Matroid is a set of bases $B(M) \subset P(E)$, whose indicators e_{B} make a polytope,

Valuated matroids

Q1: How does $P G L_{r+1}(K)$ act on
$\overline{\mathcal{X}}_{r}(K)$? Nicely on $\overline{\mathcal{B}}_{r}(K)$
Q2: Is $\overline{\mathcal{X}}_{r}(K)$ the building of
$P G L_{r+1}(K)$? yes
Q3: Can we recover $\overline{\mathcal{X}}_{r}(K)$ tropically?
Thm A: The trop maps induce natural homeomorphism
$\overline{\mathcal{X}}_{r}(K) \sim \lim _{,} \operatorname{Trop}\left(\mathbb{P}^{r}, \iota\right)$
$I=$ linear embeddings of \mathbb{P}^{r}
Compare with Payne:
$X=\mathbb{P}^{r}$
category I is smaller
What is $\operatorname{Trop}\left(P^{r}, \iota\right)$?
$\iota=\left(f_{i}\right)$ a linear embedding
associate valuated matroid (E, v) to f_{0}, \ldots, f_{n}

Denote by e_{B} the indicator vector Matroid is a set of bases $B(M) \subset P(E)$, whose indicators e_{B} make a polytope, whose edges are parallel translates of $e_{i}-e_{j}$

Valuated matroids

Q1: How does $P G L_{r+1}(K)$ act on
$\overline{\mathcal{X}}_{r}(K)$? Nicely on $\overline{\mathcal{B}}_{r}(K)$
Q2: Is $\overline{\mathcal{X}}_{r}(K)$ the building of $P G L_{r+1}(K)$? yes
Q3: Can we recover $\overline{\mathcal{X}}_{r}(K)$

tropically?

Thm A: The trop maps induce natural homeomorphism
$\overline{\mathcal{X}}_{r}(K) \sim \lim _{\leftarrow} \operatorname{Trop}\left(\mathbb{P}^{r}, \iota\right)$
$I=$ linear embeddings of \mathbb{P}^{r}
Compare with Payne:
$X=\mathbb{P}^{r}$
category I is smaller
What is $\operatorname{Trop}\left(P^{r}, \iota\right)$?
$\iota=\left(f_{i}\right)$ a linear embedding associate valuated matroid (E, v) to f_{0}, \ldots, f_{n}

Denote by e_{B} the indicator vector Matroid is a set of bases $B(M) \subset P(E)$, whose indicators e_{B} make a polytope, whose edges are parallel translates of $e_{i}-e_{j}$
function $v: B(M) \rightarrow \mathbb{R}$ is a valuated matroid if induced subdivision is matroidal

Valuated matroids

Q1: How does $P G L_{r+1}(K)$ act on
$\overline{\mathcal{X}}_{r}(K)$? Nicely on $\overline{\mathcal{B}}_{r}(K)$
Q2: Is $\overline{\mathcal{X}}_{r}(K)$ the building of
$P G L_{r+1}(K)$? yes
Q3: Can we recover $\overline{\mathcal{X}}_{r}(K)$

tropically?

Thm A: The trop maps induce natural homeomorphism
$\overline{\mathcal{X}}_{r}(K) \sim \lim _{\leftarrow} \operatorname{Trop}\left(\mathbb{P}^{r}, \iota\right)$
$I=$ linear embeddings of \mathbb{P}^{r}
Compare with Payne:
$X=\mathbb{P}^{r}$
category I is smaller
What is $\operatorname{Trop}\left(P^{r}, \iota\right)$?
$\iota=\left(f_{i}\right)$ a linear embedding associate valuated matroid (E, v) to f_{0}, \ldots, f_{n}

Denote by e_{B} the indicator vector Matroid is a set of bases $B(M) \subset P(E)$, whose indicators e_{B} make a polytope, whose edges are parallel translates of $e_{i}-e_{j}$ function $v: B(M) \rightarrow \mathbb{R}$ is a valuated matroid if induced subdivision is matroidal dual to matroidal subdivision we have linear space $\mathcal{L}(v)$

Valuated matroids

Q1: How does $P G L_{r+1}(K)$ act on
$\overline{\mathcal{X}}_{r}(K)$? Nicely on $\overline{\mathcal{B}}_{r}(K)$
Q2: Is $\overline{\mathcal{X}}_{r}(K)$ the building of
$P G L_{r+1}(K)$? yes
Q3: Can we recover $\overline{\mathcal{X}}_{r}(K)$

tropically?

Thm A: The trop maps induce natural homeomorphism
$\overline{\mathcal{X}}_{r}(K) \sim \lim _{\leftarrow} \operatorname{Trop}\left(\mathbb{P}^{r}, \iota\right)$
$I=$ linear embeddings of \mathbb{P}^{r}
Compare with Payne:
$X=\mathbb{P}^{r}$
category I is smaller
What is $\operatorname{Trop}\left(P^{r}, \iota\right)$?
$\iota=\left(f_{i}\right)$ a linear embedding associate valuated matroid (E, v) to f_{0}, \ldots, f_{n}

Denote by e_{B} the indicator vector Matroid is a set of bases $B(M) \subset P(E)$, whose indicators e_{B} make a polytope, whose edges are parallel translates of $e_{i}-e_{j}$
function $v: B(M) \rightarrow \mathbb{R}$ is a valuated matroid if induced subdivision is matroidal dual to matroidal subdivision we have linear space $\mathcal{L}(v)$ satisfies tropical equations for all $\sigma \in\binom{E}{r+1} \min \left(u_{i}+v(\sigma \backslash i)\right)$

Valuated matroids

Q1: How does $P G L_{r+1}(K)$ act on
$\overline{\mathcal{X}}_{r}(K)$? Nicely on $\overline{\mathcal{B}}_{r}(K)$
Q2: Is $\overline{\mathcal{X}}_{r}(K)$ the building of
$P G L_{r+1}(K)$? yes
Q3: Can we recover $\overline{\mathcal{X}}_{r}(K)$

tropically?

Thm A: The trop maps induce natural homeomorphism
$\overline{\mathcal{X}}_{r}(K) \sim \lim _{\leftarrow} \operatorname{Trop}\left(\mathbb{P}^{r}, \iota\right)$
$I=$ linear embeddings of \mathbb{P}^{r}
Compare with Payne:
$X=\mathbb{P}^{r}$
category I is smaller
What is $\operatorname{Trop}\left(P^{r}, \iota\right)$?
$\iota=\left(f_{i}\right)$ a linear embedding associate valuated matroid (E, v) to f_{0}, \ldots, f_{n}

Denote by e_{B} the indicator vector Matroid is a set of bases $B(M) \subset P(E)$, whose indicators e_{B} make a polytope,
whose edges are parallel translates of $e_{i}-e_{j}$
function $v: B(M) \rightarrow \mathbb{R}$ is a valuated matroid if induced subdivision is matroidal dual to matroidal subdivision we have linear space $\mathcal{L}(v)$ satisfies tropical equations for all $\sigma \in\binom{E}{r+1} \min \left(u_{i}+v(\sigma \backslash i)\right)$

Valuated matroids

Q1: How does $P G L_{r+1}(K)$ act on
$\overline{\mathcal{X}}_{r}(K)$? Nicely on $\overline{\mathcal{B}}_{r}(K)$
Q2: Is $\overline{\mathcal{X}}_{r}(K)$ the building of
$P G L_{r+1}(K)$? yes
Q3: Can we recover $\overline{\mathcal{X}}_{r}(K)$

tropically?

Thm A: The trop maps induce natural homeomorphism
$\overline{\mathcal{X}}_{r}(K) \sim \lim _{\leftarrow} \operatorname{Trop}\left(\mathbb{P}^{r}, \iota\right)$
$I=$ linear embeddings of \mathbb{P}^{r}
Compare with Payne:
$X=\mathbb{P}^{r}$
category I is smaller
What is $\operatorname{Trop}\left(P^{r}, \iota\right)$?
$\iota=\left(f_{i}\right)$ a linear embedding associate valuated matroid (E, v) to f_{0}, \ldots, f_{n}

Denote by e_{B} the indicator vector Matroid is a set of bases $B(M) \subset P(E)$, whose indicators e_{B} make a polytope,
whose edges are parallel translates of $e_{i}-e_{j}$
function $v: B(M) \rightarrow \mathbb{R}$ is a valuated matroid if induced subdivision is matroidal dual to matroidal subdivision we have linear space $\mathcal{L}(v)$ satisfies tropical equations for all $\sigma \in\binom{E}{r+1} \min \left(u_{i}+v(\sigma \backslash i)\right)$

More results

How does $\operatorname{Trop}\left(\mathbb{P}^{r}, \iota\right)$ lives inside the building?

More results

How does $\operatorname{Trop}\left(\mathbb{P}^{r}, \iota\right)$ lives inside the building?

Thm B: Let $\iota: \mathbb{P}^{r} \hookrightarrow \mathbb{P}^{n}$ be a linear closed immersion.

More results

How does $\operatorname{Trop}\left(\mathbb{P}^{r}, \iota\right)$ lives inside the building?

Thm B: Let $\iota: \mathbb{P}^{r} \hookrightarrow \mathbb{P}^{n}$ be a linear closed immersion. Then there is a natural piecewise linear embedding

More results

How does $\operatorname{Trop}\left(\mathbb{P}^{r}, \iota\right)$ lives inside the building?

Thm B: Let $\iota: \mathbb{P}^{r} \hookrightarrow \mathbb{P}^{n}$ be a linear closed immersion.
Then there is a natural piecewise linear embedding
$J: \operatorname{Trop}\left(\mathbb{P}^{r}, \iota\right) \rightarrow \overline{\mathcal{B}}_{r}(K)$

More results

How does $\operatorname{Trop}\left(\mathbb{P}^{r}, \iota\right)$ lives inside the building?

Thm B: Let $\iota: \mathbb{P}^{r} \hookrightarrow \mathbb{P}^{n}$ be a linear closed immersion.
Then there is a natural piecewise linear embedding
$J: \operatorname{Trop}\left(\mathbb{P}^{r}, \iota\right) \rightarrow \overline{\mathcal{B}}_{r}(K)$
such that

More results

How does $\operatorname{Trop}\left(\mathbb{P}^{r}, \iota\right)$ lives inside the building?

Thm B: Let $\iota: \mathbb{P}^{r} \hookrightarrow \mathbb{P}^{n}$ be a linear closed immersion.
Then there is a natural piecewise linear embedding
$J: \operatorname{Trop}\left(\mathbb{P}^{r}, \iota\right) \rightarrow \overline{\mathcal{B}}_{r}(K)$
such that

More results

How does $\operatorname{Trop}\left(\mathbb{P}^{r}, \iota\right)$ lives inside the building?

Is $\overline{\mathcal{X}}_{r}(K)$ a tropical linear space?
Consider $w_{\text {univ }}$ given by the map
Thm B: Let $\iota: \mathbb{P}^{r} \hookrightarrow \mathbb{P}^{n}$ be a linear closed immersion.
Then there is a natural piecewise linear embedding
$J: \operatorname{Trop}\left(\mathbb{P}^{r}, \iota\right) \rightarrow \overline{\mathcal{B}}_{r}(K)$
such that

More results

How does $\operatorname{Trop}\left(\mathbb{P}^{r}, \iota\right)$ lives inside the building?

Is $\overline{\mathcal{X}}_{r}(K)$ a tropical linear space?
Consider $w_{\text {univ }}$ given by the map
Thm B: Let $\iota: \mathbb{P}^{r} \hookrightarrow \mathbb{P}^{n}$ be a linear closed immersion.

$$
w_{\text {univ }}:\binom{K^{r+1} \backslash 0}{r+1} \longrightarrow \mathbb{R} \cup \infty
$$

Then there is a natural piecewise linear embedding
$J: \operatorname{Trop}\left(\mathbb{P}^{r}, \iota\right) \rightarrow \overline{\mathcal{B}}_{r}(K)$
such that

More results

How does $\operatorname{Trop}\left(\mathbb{P}^{r}, \iota\right)$ lives inside the building?

Thm B: Let $\iota: \mathbb{P}^{r} \hookrightarrow \mathbb{P}^{n}$ be a linear closed immersion.
Then there is a natural piecewise linear embedding
$J: \operatorname{Trop}\left(\mathbb{P}^{r}, \iota\right) \rightarrow \overline{\mathcal{B}}_{r}(K)$
such that

More results

How does $\operatorname{Trop}\left(\mathbb{P}^{r}, \iota\right)$ lives inside the building?

Thm B: Let $\iota: \mathbb{P}^{r} \hookrightarrow \mathbb{P}^{n}$ be a linear closed immersion.
Then there is a natural piecewise linear embedding
$J: \operatorname{Trop}\left(\mathbb{P}^{r}, \iota\right) \rightarrow \overline{\mathcal{B}}_{r}(K)$
such that

More results

How does $\operatorname{Trop}\left(\mathbb{P}^{r}, \iota\right)$ lives inside the building?

Thm B: Let $\iota: \mathbb{P}^{r} \hookrightarrow \mathbb{P}^{n}$ be a linear closed immersion.
Then there is a natural piecewise linear embedding
$J: \operatorname{Trop}\left(\mathbb{P}^{r}, \iota\right) \rightarrow \overline{\mathcal{B}}_{r}(K)$
such that

Is $\overline{\mathcal{X}}_{r}(K)$ a tropical linear space?
Consider $w_{\text {univ }}$ given by the map $w_{\text {univ }}:\binom{K^{r+1} \backslash 0}{r+1} \longrightarrow \mathbb{R} \cup \infty$ induced by the permutation-invariant map $w_{\text {univ }}(\sigma)=\mathrm{val} \circ \operatorname{det} \sigma$.

Thm C: wuniv universal realizable valuated matroid.

More results

How does $\operatorname{Trop}\left(\mathbb{P}^{r}, \iota\right)$ lives inside the building?

Thm B: Let $\iota: \mathbb{P}^{r} \hookrightarrow \mathbb{P}^{n}$ be a linear closed immersion.
Then there is a natural piecewise linear embedding
$J: \operatorname{Trop}\left(\mathbb{P}^{r}, \iota\right) \rightarrow \overline{\mathcal{B}}_{r}(K)$
such that

Thm C: wuniv universal realizable valuated matroid.
Then:

$$
{ }^{\star} \overline{\mathcal{B}}_{n}(K) \xrightarrow{\text { trop }} \mathbb{T} \mathbb{P}^{n} . \quad \overline{\mathcal{X}}_{r}(K)=\mathcal{L}\left(w_{\text {univ }}\right) .
$$

Is $\overline{\mathcal{X}}_{r}(K)$ a tropical linear space?
Consider $w_{\text {univ }}$ given by the map $w_{\text {univ }}:\binom{K^{r+1} \backslash 0}{r+1} \longrightarrow \mathbb{R} \cup \infty$ induced by the permutation-invariant map $w_{\text {univ }}(\sigma)=\mathrm{val} \circ \operatorname{det} \sigma$.

Future directions

Recover tropicallly the buildings for other groups.

Future directions

Recover tropicallly the buildings for other groups.
This probably requires developing further the theory of coxeter matroids in tropical geometry.

Future directions

Recover tropicallly the buildings for other groups.
This probably requires developing further the theory of coxeter matroids in tropical geometry. (current cases in literature:
Δ-matroids, B-type matroids, etc.)

References

[Dra08] Jan Draisma. "A Tropical Approach to Secant Dimensions". In: Journal of Pure and Applied Algebra 212.2 (2008), pp. 349-363. ISSN: 0022-4049.
[MS15] Diane Maclagan and Bernd Sturmfels. Introduction to Tropical Geometry. Vol. 161. American Mathematical Soc., 2015. ISBN: 0-8218-5198-5.
[Pay08] Sam Payne. "Analytification Is the Limit of All Tropicalizations". In: arXiv preprint arXiv:0805.1916 (2008). arXiv: 0805.1916.
[Wer04] Annette Werner. "Compactification of the Bruhat-Tits Building of PGL by Seminorms". In: Mathematische Zeitschrift 248 (2004), pp. 511-526. ISSN: 0025-5874.

