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Goal of project: for non-arch (K , val), fixed r , and varying n

▶ to glue all tropicalizations of linear embeddings ι : Pr → Pn

▶ to describe intrinsically the resulting object X̄r (K )

▶ X̄r (K ) admits an action by PGLr+1(K ),
▶ for K nice (spherically complete) to show that

▶ X̄ (K ) is homeomorphic to affine building (non-trivial val)
▶ or homeomorphic to cone over spherical building

Motivation: tropical geometry deals with piecewise linear objects
that arise as limits of degenerations on classical algebraic varieties

Thus, a central question is what information survives this
degeneration, and how to reconcile all choices done through the
process
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Tropical geometry

How to tropicalize affine variety X/
non-archimedean (K , val)?
val : K → R ∪∞ satisfies:

(V1) val a =∞ iff a = 0

(V2) val(ab) = val a+ val b

(V3) val(a+ b) ≥ min(val(a), val(b))

A Trop(X ) = {val(yi ) : y ∈ X}
B desc. via initial ideals
C desc. via min attained at least
twice in trop equation.
Motiv: If

∑
ti = 0, then min val ti

attained at least twice.

Sometimes forgotten:
semivaluation sv : K → R ∪∞:

(V’1) sv 0 =∞
D fi generators of coord. ring K [X ]
consider emedding f = (fi ):

Tropf (X ) = {v ′(f1), . . . , v
′(fn) :

v ′ : K [X ]→ R̄ extends v}
Surprise surprise:
Under appropiate conditions, all are
the same [MS15; Dra08].

Crucial: Description D suggests
Trop is a projection of a space of
semivaluations, a gigantic object.
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Berkovich analytification

D f = (fi ) s.t. K [X ] = ⟨fi ⟩:
Tropf (X ) = {v ′(f1), . . . , v ′(fn) :
v ′ : K [X ]→ R̄ extends v}
So Trop is projection of big space
of v ′. Can we reassemble it?

(semi)val gives (semi)norm:
|a| = exp(− val a).

Berkovich analytification X an =
{multipli. seminorms |.|x on K [X ]}
By [Pay08] we have:
“analytification is the limit of all
tropicalizations”
(come to Stefano’s talk for
details)

Berkovich projective line, by Baker and Silverman:

Several types of points:

Type I: X embeds into them
Type II: Branching (directions described
by P(k)), k = val−1(≥ 0)/val−1(≥ 1))
Type III: discs with radius not in im val

Type IV: absent if K spherically

complete (no cauterizations)
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Buildings

“analytification is the limit of all
tropicalizations”

X an∼ lim←−Trop
(
X , ι

)
πι(x) = (− log |f1|x , . . . ,− log |fn|x)

Now assume ι is linear, i.e.
deg fi = 1
lim←−πι factors thru. a retraction:

X an τ−→ N (X )
Trop−−→ lim←−Trop

(
X , ι

)
τ restricts |·|x on K [X ] to
∥·∥x on lin. forms of K [X ]

-Particular case: N r (K ) is the
Goldman-Iwahori space of
seminorms on (K r )∗

-Set X r (K ) = N r (K )/ ∼
where ∥·∥ ∼ ∥·∥′ if ∥·∥ = λ ∥·∥′

Buildings are highly symmetrical
spaces with an action of a group.
They have a polyhedral structure
of appartments.
Q1: How does PGLr+1(K ) act on

X r (K )?

Q2: Is X r (K ) the building of

PGLr+1(K )?

Q3: Can we recover X r (K )

tropically?
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Appartments

X r (K ) is the homothety classes of
seminorms on (K∗)r+1

Diagonalizable seminorms
Bn(K ) ⊂ X n(K ) :
vec. space V of dim-n
choose basis B and u ∈ (R ∪∞)n

for vector v =
∑

i∈B λiei ∈ V
∥v∥B,u = maxi∈B |λi |K exp(−ui )
By work of [Wer04], when val
non-trivial, Br (K ) is the
compactification of the affine
building for PGLr+1(K )

Appartments indexed by bases B.
ΦB : (R ∪∞)n → Br (K )
u 7→ ∥·∥B,u

If K spherically complete:
Br (K ) = X r (K )
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Valuated matroids

Q1: How does PGLr+1(K ) act on
X r (K )?

Nicely on Br (K )
Q2: Is X r (K ) the building of
PGLr+1(K )? yes
Q3: Can we recover X r (K )
tropically?

Thm A: The trop maps induce
natural homeomorphism
X r (K )∼ lim←−I

Trop
(
Pr , ι

)
I = linear embeddings of Pr

Compare with Payne:
X = Pr

category I is smaller

What is Trop(P r , ι)?
ι = (fi ) a linear embedding
associate valuated matroid (E , v) to
f0, . . . , fn

Denote by eB the indicator vector
Matroid is a set of bases
B(M) ⊂ P(E ), whose indicators eB
make a polytope,
whose edges are parallel translates
of ei − ej
function v : B(M)→ R is a
valuated matroid if induced
subdivision is matroidal
dual to matroidal subdivision we
have linear space L(v)
satisfies tropical equations for all
σ ∈

(
E

r+1

)
min(ui + v(σ \ i))
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More results

How does Trop(Pr , ι) lives inside
the building?

Thm B: Let ι : Pr ↪→ Pn be a
linear closed immersion.
Then there is a natural piecewise
linear embedding
J : Trop(Pr , ι)→ Br (K )
such that

Is X r (K ) a tropical linear space?

Consider wuniv given by the map

wuniv :
(K r+1\0

r+1

)
−→ R ∪∞

induced by the
permutation-invariant map
wuniv(σ) = val ◦ detσ.

Thm C: wuniv universal realizable
valuated matroid.
Then:

X r (K ) = L(wuniv).



More results

How does Trop(Pr , ι) lives inside
the building?

Thm B: Let ι : Pr ↪→ Pn be a
linear closed immersion.

Then there is a natural piecewise
linear embedding
J : Trop(Pr , ι)→ Br (K )
such that

Is X r (K ) a tropical linear space?

Consider wuniv given by the map

wuniv :
(K r+1\0

r+1

)
−→ R ∪∞

induced by the
permutation-invariant map
wuniv(σ) = val ◦ detσ.

Thm C: wuniv universal realizable
valuated matroid.
Then:

X r (K ) = L(wuniv).



More results

How does Trop(Pr , ι) lives inside
the building?

Thm B: Let ι : Pr ↪→ Pn be a
linear closed immersion.
Then there is a natural piecewise
linear embedding

J : Trop(Pr , ι)→ Br (K )
such that

Is X r (K ) a tropical linear space?

Consider wuniv given by the map

wuniv :
(K r+1\0

r+1

)
−→ R ∪∞

induced by the
permutation-invariant map
wuniv(σ) = val ◦ detσ.

Thm C: wuniv universal realizable
valuated matroid.
Then:

X r (K ) = L(wuniv).



More results

How does Trop(Pr , ι) lives inside
the building?

Thm B: Let ι : Pr ↪→ Pn be a
linear closed immersion.
Then there is a natural piecewise
linear embedding
J : Trop(Pr , ι)→ Br (K )

such that

Is X r (K ) a tropical linear space?

Consider wuniv given by the map

wuniv :
(K r+1\0

r+1

)
−→ R ∪∞

induced by the
permutation-invariant map
wuniv(σ) = val ◦ detσ.

Thm C: wuniv universal realizable
valuated matroid.
Then:

X r (K ) = L(wuniv).



More results

How does Trop(Pr , ι) lives inside
the building?

Thm B: Let ι : Pr ↪→ Pn be a
linear closed immersion.
Then there is a natural piecewise
linear embedding
J : Trop(Pr , ι)→ Br (K )
such that

Is X r (K ) a tropical linear space?

Consider wuniv given by the map

wuniv :
(K r+1\0

r+1

)
−→ R ∪∞

induced by the
permutation-invariant map
wuniv(σ) = val ◦ detσ.

Thm C: wuniv universal realizable
valuated matroid.
Then:

X r (K ) = L(wuniv).



More results

How does Trop(Pr , ι) lives inside
the building?

Thm B: Let ι : Pr ↪→ Pn be a
linear closed immersion.
Then there is a natural piecewise
linear embedding
J : Trop(Pr , ι)→ Br (K )
such that

Is X r (K ) a tropical linear space?

Consider wuniv given by the map

wuniv :
(K r+1\0

r+1

)
−→ R ∪∞

induced by the
permutation-invariant map
wuniv(σ) = val ◦ detσ.

Thm C: wuniv universal realizable
valuated matroid.
Then:

X r (K ) = L(wuniv).



More results

How does Trop(Pr , ι) lives inside
the building?

Thm B: Let ι : Pr ↪→ Pn be a
linear closed immersion.
Then there is a natural piecewise
linear embedding
J : Trop(Pr , ι)→ Br (K )
such that

Is X r (K ) a tropical linear space?

Consider wuniv given by the map

wuniv :
(K r+1\0

r+1

)
−→ R ∪∞

induced by the
permutation-invariant map
wuniv(σ) = val ◦ detσ.

Thm C: wuniv universal realizable
valuated matroid.
Then:

X r (K ) = L(wuniv).



More results

How does Trop(Pr , ι) lives inside
the building?

Thm B: Let ι : Pr ↪→ Pn be a
linear closed immersion.
Then there is a natural piecewise
linear embedding
J : Trop(Pr , ι)→ Br (K )
such that

Is X r (K ) a tropical linear space?

Consider wuniv given by the map

wuniv :
(K r+1\0

r+1

)
−→ R ∪∞

induced by the
permutation-invariant map
wuniv(σ) = val ◦ detσ.

Thm C: wuniv universal realizable
valuated matroid.
Then:

X r (K ) = L(wuniv).



More results

How does Trop(Pr , ι) lives inside
the building?

Thm B: Let ι : Pr ↪→ Pn be a
linear closed immersion.
Then there is a natural piecewise
linear embedding
J : Trop(Pr , ι)→ Br (K )
such that

Is X r (K ) a tropical linear space?

Consider wuniv given by the map

wuniv :
(K r+1\0

r+1

)
−→ R ∪∞

induced by the
permutation-invariant map

wuniv(σ) = val ◦ detσ.

Thm C: wuniv universal realizable
valuated matroid.
Then:

X r (K ) = L(wuniv).



More results

How does Trop(Pr , ι) lives inside
the building?

Thm B: Let ι : Pr ↪→ Pn be a
linear closed immersion.
Then there is a natural piecewise
linear embedding
J : Trop(Pr , ι)→ Br (K )
such that

Is X r (K ) a tropical linear space?

Consider wuniv given by the map

wuniv :
(K r+1\0

r+1

)
−→ R ∪∞

induced by the
permutation-invariant map
wuniv(σ) = val ◦ detσ.

Thm C: wuniv universal realizable
valuated matroid.
Then:

X r (K ) = L(wuniv).



More results

How does Trop(Pr , ι) lives inside
the building?

Thm B: Let ι : Pr ↪→ Pn be a
linear closed immersion.
Then there is a natural piecewise
linear embedding
J : Trop(Pr , ι)→ Br (K )
such that

Is X r (K ) a tropical linear space?

Consider wuniv given by the map

wuniv :
(K r+1\0

r+1

)
−→ R ∪∞

induced by the
permutation-invariant map
wuniv(σ) = val ◦ detσ.

Thm C: wuniv universal realizable
valuated matroid.

Then:

X r (K ) = L(wuniv).



More results

How does Trop(Pr , ι) lives inside
the building?

Thm B: Let ι : Pr ↪→ Pn be a
linear closed immersion.
Then there is a natural piecewise
linear embedding
J : Trop(Pr , ι)→ Br (K )
such that

Is X r (K ) a tropical linear space?

Consider wuniv given by the map

wuniv :
(K r+1\0

r+1

)
−→ R ∪∞

induced by the
permutation-invariant map
wuniv(σ) = val ◦ detσ.

Thm C: wuniv universal realizable
valuated matroid.
Then:

X r (K ) = L(wuniv).



Future directions

Recover tropicallly the buildings
for other groups.

This probably requires developing
further the theory of coxeter
matroids in tropical geometry.
(current cases in literature:
∆-matroids, B-type matroids,
etc. )
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